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Unveiling African rainforest composition 
and vulnerability to global change
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Africa is forecasted to experience large and rapid climate change1 and population 
growth2 during the twenty-first century, which threatens the world’s second largest 
rainforest. Protecting and sustainably managing these African forests requires an 
increased understanding of their compositional heterogeneity, the environmental 
drivers of forest composition and their vulnerability to ongoing changes. Here, using a 
very large dataset of 6 million trees in more than 180,000 field plots, we jointly model 
the distribution in abundance of the most dominant tree taxa in central Africa, and 
produce continuous maps of the floristic and functional composition of central African 
forests. Our results show that the uncertainty in taxon-specific distributions averages 
out at the community level, and reveal highly deterministic assemblages. We uncover 
contrasting floristic and functional compositions across climates, soil types and 
anthropogenic gradients, with functional convergence among types of forest that are 
floristically dissimilar. Combining these spatial predictions with scenarios of climatic 
and anthropogenic global change suggests a high vulnerability of the northern and 
southern forest margins, the Atlantic forests and most forests in the Democratic 
Republic of the Congo, where both climate and anthropogenic threats are expected to 
increase sharply by 2085. These results constitute key quantitative benchmarks for 
scientists and policymakers to shape transnational conservation and management 
strategies that aim to provide a sustainable future for central African forests.

Concomitant increases in climate stress, human population needs 
and resource extraction in central Africa raise environmental con-
cerns3–5. These threats may have considerable impacts on the carbon 
budget6, climate7 and biodiversity of central African forests8, which 
shelter some of the world’s most iconic wildlife species and which are 
already experiencing a much drier and seasonal climate than other 
tropical forests9. However, the current composition of central African 
forests and its determinants at regional scale are still poorly known, 
often being studied in limited areas10–12 and datasets13 or at a very coarse 
grain with heterogeneous occurrence records14. Vast regions of cen-
tral African forests remain poorly explored scientifically15, and most 
space-borne systems of Earth observation provide very limited informa-
tion on forest composition16. This hinders our ability to understand how 
the composition and functions of forests vary regionally, to forecast 

how these forests will face upcoming global changes and, ultimately, 
to anticipate—on scientific bases—how to protect and manage them 
beyond national boundaries.

In this study, we used an extensive dataset of forest inventories to (1) 
model the main floristic and functional gradients over central African 
forests; and (2) assess their expected vulnerability under forecasted 
conditions of global (climatic and anthropogenic) change. We com-
piled the abundance distributions of 193 dominant tree taxa in 185,665 
field plots (around 90,000 ha) from commercial forest inventories 
spread over the 5 main forested countries in central Africa (Cameroon, 
Central African Republic, Democratic Republic of the Congo, Gabon 
and Republic of the Congo) (Extended Data Fig. 1). We modelled the 
joint distributions of taxon abundances at 10-km resolution using 
supervised component generalized linear regression (SCGLR)17,  
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a modelling method that extends partial least-squares regression to 
the multivariate generalized linear framework. SCGLR models a set of 
responses (here the abundances of taxa) from synthetic orthogonal 
explanatory components derived from 24 climatic variables (here-
after, climatic components, CCs) and additional soil type (here, sand 
versus clay) and anthropogenic pressure covariates. We developed for 
this study an index, based on population density and road networks, 
that is specifically designed and calibrated to predict the intensity of 
recent human-induced forest disturbances in central Africa (see Meth-
ods). Finally, thanks to the very large size of the dataset, the predicted 
floristic and functional gradients were cross-validated with spatially 
independent observations using Spearman correlation coefficients, ρCV.

Floristic composition in central Africa
Our model predicted individual taxon abundances with an overall 
median correlation ρCV of 0.48 (range of −0.11 to 0.83). This median 
value was still as high as 0.45 when unoccupied sites were removed, 
showing that, beyond presence and absence, our model also captured 
variations in abundance within a taxon’s distributional range. A corre-
spondence analysis (CA) performed on the predicted taxon abundances 
revealed major regional floristic gradients (Fig. 1, Extended Data Figs. 2, 
3) that were highly correlated with the observed gradients (ρCV = 0.89, 
0.71 and 0.6 for CA axes 1, 2 and 3, respectively; Fig. 1b–d). Contrary 
to Amazonian and Southeast Asian forests, in which soil was shown to 
be the primary large-scale driver of tree community composition18,19, 
the most prominent floristic gradient predicted here (CA axis 1) was 
highly related to climate, and in particular to the first predictive CC 
(Pearson’s r = 0.98), contrasting areas with a cool and light-deficient20 
dry season (coastal Gabon) and areas with high evapotranspiration 
rates (northern limit of the central African forests; Extended Data 
Fig. 4). The second predicted floristic gradient (CA axis 2) was highly 
correlated with the two other CCs (r = −0.86 and −0.72 for CC2 and CC3, 
respectively) related to seasonality and maximum temperature, thus 
contrasting equatorial areas with a low water deficit and areas with a 
high water deficit towards the limits of the tropics. Climate seasonality 
was also found to be a major driver of tree community composition in 
Amazonia18, and maximum temperature has recently been identified 
as the most important pantropical driver of forest biomass, affecting 
woody productivity21. The third predicted floristic gradient (CA axis 3) 
revealed floristic variations that are more local and that highlighted 

human-disturbed forests (r = 0.67 with our index of human-induced 
forest-disturbance intensity).

As already shown in previous studies22,23, the association between 
taxon distributions and climate patterns may appear by chance because 
both are spatially autocorrelated at the regional scale. We thus used a 
spatially explicit null model that randomized the predictive CCs while 
preserving their spatial (co)structures. When keeping the soil type 
and human impact on forests unchanged, the null model predicted 
abundances with a similar predictive power to the model based on the 
original CCs for 67% of the taxa (P > 0.1). This suggests that variation in 
taxon abundances directly depends on climate for a minimum of only 
one-third of the taxa, whereas for most of them, abundance may cor-
relate with climate by chance only. By contrast, the association between 
climate and the main gradients of floristic assemblages was robust to 
autocorrelation artefacts (P = 0.028, 0.006 and 0.06 for CA1, CA2 and 
CA3, respectively). This result confirms that extrapolating assemblages 
from climate variables is more reliable than extrapolating individual 
taxon abundances24. Indeed, individual taxon abundances are likely to 
be less predictable on the basis of only current drivers as they are also 
affected by unknown past human disturbances25, biotic interactions 
and biogeographical history26, the idiosyncratic effects of which tend 
to average out at the community level.

Functional composition in central Africa
From the predicted floristic assemblages, we computed the commu-
nity weighted mean27 of three functional traits that are known to have 
a central role in ecosystem processes: wood density, deciduousness 
and maximum diameter (Fig. 2). The predicted functional composi-
tion was consistent with the observations (ρCV = 0.47, 0.75 and 0.45 for 
the three traits, respectively; Extended Data Fig. 5). As in Amazonia18, 
community wood density varied with soil type, with the highest values 
found for sandy soils that are located at the boundaries of Cameroon, 
the Republic of the Congo and the Central African Republic, and where 
tree species with conservative resource-use strategies predominate11. 
However, larger-scale variations in wood density were primarily driven 
by human-induced forest disturbances; community wood density was 
lower in human-disturbed forests, indicating that they are mostly 
composed of fast-growing taxa28. Notably, these areas also contain a 
high proportion of trees that can potentially reach a large diameter. 
These two results indicate that human-disturbed forests tend to be 
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Fig. 1 | Floristic composition of central African forests. a, Spatialized RGB 
composition of the three first axes of a correspondence analysis (CA) 
performed on jointly predicted taxon abundances at 10-km resolution (n = 193 
taxa; axis 1, blue; axis 2, red; axis 3, green). Grey crosses represent forested 
areas outside the calibration domain, including permanently flooded forests, 

and country boundaries are represented in black. DD, decimal degrees. b–d, 
Cross-validation results comparing the observed and predicted CA gradients 
for axis 1 (b), axis 2 (c) and axis 3 (d). The 1:1 line is displayed in red. Taxon CA 
planes 1–2 and 1–3 are provided in Extended Data Fig. 2.
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dominated by long-lived pioneer taxa, which are characterized by a 
low wood density but a large potential stature and thus offer a fast and 
relatively long-lasting carbon sink potential in the absence of distur-
bances29. Finally, a marked deciduousness gradient ran from the highly 
evergreen forests of coastal Gabon to the northern limit of the central 
African forests with, again, a well-known exception on the northern 
sandy soil plateau11,30.

A reference map of forest types
To ease practical applications, we performed hierarchical clustering 
of the predicted floristic gradients (pixel scores on the first five CA 
axes), which are continuous by nature, and identified ten major types 
of forest (Fig. 3; Extended Data Table 1). The strongest floristic dis-
similarity appeared between Atlantic forests (types 1–3) and the other 
forest types (4–10), within which semi-deciduous seasonal forests were 
clearly distinguished (types 4–6). We also observed functional conver-
gences among floristically dissimilar types of forest and vice versa. For 
example, despite having a regional species pool similar to deciduous 
forests (types 4 and 6), sandstone forests (type 5) have a functional 
composition that is closer to remote forest groups (for example, types 
2, 3, 7 and 8), with a high wood density and low deciduousness. Soil 
filtering modifies the relative abundance of species (rather than their 
presence or absence31), favouring suitable functional attributes in poor 
sandy soils11. By contrast, although Atlantic forests (types 1–3) have 
little taxonomic affinity with the east–central and southern forests 
(types 7 and 8), they show a similar functional composition owing to 

climate conditions that are more similar, as represented on the first 
predictive CC (Extended Data Table 1). This confirms that although 
taxonomic composition has an important biogeographical component, 
the functional composition of tree communities can converge in similar 
environmental conditions.

Vulnerability to global change
For the 10 forest types, most climate models predict current climate 
conditions either to virtually disappear from central Africa (for exam-
ple, types 2 and 5; Extended Data Fig. 6), or to move at spatial and tem-
poral scales that are incommensurate with tree dispersal ability (for 
example, types 4 and 6). This suggests that current forest communities 
will not be able to track their present climate envelopes and will face the 
emergence of novel climates, making the prediction of taxon distribu-
tions under future climate projection highly risky32. We thus assessed 
the vulnerability of central African forests to climate change through 
their sensitivity, exposure and adaptive capacity, following the recom-
mendation of the Intergovernmental Panel on Climate Change (IPCC)33.

We quantified sensitivity at the community level using the inverse of 
the current climate niche breadth of taxa (Fig. 4c) and assuming that 
assemblages dominated by taxa with narrow environmental tolerances 
will be more vulnerable to upcoming changes34. Sensitivity appeared to 
be high in coastal Gabon (type 2), where a high level of species endemism 
exists35, and in the driest northern margin of central African forests. 
Recent studies consistently showed that drier tropical forests exhibited 
larger functional changes than wetter forests in response to a long-term 
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Fig. 2 | Predicted functional composition of central African forests. a–c, Predicted community weighted functional trait values (wood density (a), deciduousness  
(b) and maximum diameter (c)) at 10-km resolution.
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Fig. 3 | Main forest types across central Africa and their functional 
composition. a, Forest-type classification obtained by hierarchical clustering 
of the predicted floristic gradients. Colours represent an RGB composite of the 
mean values of the three functional traits per forest type (see Fig. 2); that is, 
wood density (red), deciduousness (green) and maximum diameter (blue). 
Thus, similar colours illustrate a similar functional composition. b, Taxonomic 
relationships among the forest types illustrated by a clustering dendrogram 
(top) and a box plot of the standardized predicted functional composition over 

the 12,295 grid cells (bottom), with wood density in red, deciduousness in 
green and maximum diameter in blue (median is reported at the centre, the 
lower and upper hinges correspond to the first and third quartiles and the two 
whiskers extend from these two quartiles to the largest and smallest values, at 
most 1.5 times the interquartile range from the hinge). Forest-type names and 
additional information are provided in Extended Data Table 1. Clustering 
uncertainty is reported in Supplementary Fig. 1.
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drought in west Africa36 and are likely to be more sensitive to global 
warming21. By contrast, forests from northwest Cameroon showed a 
relatively low sensitivity to current climate conditions, probably because 
these forests are dominated by widespread tree taxa that are adapted 
to anthropogenic pressure (Fig. 2). Long-lived pioneer taxa—typical of 
these human-disturbed forests—are also expected to be favoured by a 
possible acceleration in forest dynamics induced by global change37,38.

Exposure to climate change was quantified as the extent to which 
the current climate determinants (CC1–CC3) are expected to change 
by 2085, using 18 unique bias-corrected climate model combinations 
(under the IPCC Assessment Report 5 (AR5) RCP 4.5 scenario; see 
Extended Data Fig. 7 for other scenarios). We found that exposure 
to climate change was mostly driven by an increase in drought stress 
and maximum temperature4,39 (Supplementary Fig. 2). The central 
and east part of central African forests are predicted to be the most 
exposed, particularly in the south of the Democratic Republic of the 
Congo (Fig. 4d). Note, however, that climate-change predictions in 
central Africa are uncertain because meteorological data for model 
validation are lacking4 (Supplementary Fig. 3).

Finally, we assessed the adaptive capacity of tree communities 
through their evolutionary potential. We first found highly significant 
niche conservatism along the first two climate components (P < 0.002). 
This indicates that closely related taxa tend to share similar climate 
niche spaces at the regional scale, and suggests that they could be 
affected similarly by future climate change. We therefore assumed that 
higher local phylogenetic diversity provides a wider range of potential 
responses to novel climate conditions40, in a similar manner to the 
insurance hypothesis41. We thus used the phylogenetic diversity of 
predicted tree assemblages as a proxy of their adaptive capacity to 
climate change. Undisturbed semi-deciduous and transitional forests 
(types 6 and 10 in Fig. 3) appeared phylogenetically more diverse than 
evergreen forests (Fig. 4e). A recent study in Amazonia42 also found a 
peak of phylogenetic diversity at an intermediate level of precipitation, 
at which dry- and wet-adapted lineages are mixing. As expected43, we 
also found that human-disturbed areas tended to have a low phyloge-
netic diversity.

The resulting vulnerability of tree communities to climate change 
did not correlate with the expected human impact on forests in 2085 
(ρ = −0.08), which was assessed here by using country-specific projec-
tions of human population growth (Fig. 4a, Extended Data Fig. 8). Vul-
nerability to climate change is expected to be higher for communities 
that are dominated by hard-wooded taxa (ρ = 0.46 with wood density, 
Supplementary Table 1). By contrast, the forecasted human impact on 
forests is predicted to be higher in already disturbed communities; 
that is, those that are dominated by light-wooded taxa with a large 
potential size (ρ = −0.4 and 0.43 for wood density and maximum size, 
respectively). However, because we did not account for the appear-
ance of new roads by 2085, we may have underestimated the effect 
of future anthropogenic activities in remote, currently undisturbed 
forests. Vulnerability to both climate change and anthropogenic 
activities (pink colour in Fig. 4a) is predicted to be high for forests of 
coastal Gabon, in large areas of forests from Democratic Republic of 
the Congo, and in the northern margin of the forest domain. Forests 
from Cameroon and in the south of the Republic of the Congo mostly 
appear vulnerable owing to the high expected human impact on for-
ests by 2085 (orange patches in Fig. 4a). By contrast, the tri-national 
Sangha transboundary forest complex and the northeastern part of 
Gabon appeared to be the least vulnerable area in the region (large 
green patch in Fig. 4a). Globally, the Democratic Republic of the 
Congo, where most of the central African forests are located, mainly 
contains forests that are predicted to be vulnerable to climate change 
and/or to anthropogenic pressure (blue to pink patches in Fig. 4a).

Conclusions and perspectives
Although some country-specific vegetation patterns were already sug-
gested by phytogeographers (for example, refs. 44,45), here we provide 
what is to our knowledge the first synoptic view of central African forest 
composition at a fine resolution, based on a vast amount of quantitative 
data. Unveiling the functional composition of central African forests 
provides key insights into their functioning, dynamics and carbon 
uptake potential, and the ways in which they could respond to global 
change. Accounting for the functional characteristics of forests can 
considerably reduce uncertainty in large-scale models of vegetation46 
or improve remote sensing approaches; for example, by assimilating 
large-scale variation in wood density into forest carbon maps47. Our 
maps may also help scientists to design representative sampling to bet-
ter understand the long-term impact of climate change on tree species 
and stand dynamics; for example, monitoring underrepresented forest 
types or areas that are highly vulnerable to climate change.

The forest types and vulnerability maps should guide the devel-
opment of new land-use plans that preserve the full range of evo-
lutionary and functional potential of today’s forests—or, at least, 
that maintain their connectivity—to attenuate the threats related 
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to expected changes. In central Africa, protected areas and logging 
concessions, which together cover almost half of the forest domain 
(14.9% and 32.2%, respectively; Extended Data Fig. 9), are impor-
tant to consider in such plans. Protected areas do not equally cover 
the 10 identified types of forest (4–54%; Extended Data Table 1) and 
should therefore be extended to reach a better representativity. How 
estimated vulnerability should be accounted for when designing 
protected areas, for example, by extending the network in vulner-
able areas to minimize the loss of biodiversity, or in areas with low 
anthropogenic pressure to improve their protection, is subject to 
debate48. Logging concessions can also contribute to the mainte-
nance of forest cover and functions, providing that they are well 
managed49,50, and are likely to act as biodiversity corridors between 
protected areas at present51. However, this will only prove effective 
in the long term if they strictly comply with legislation and, ideally, 
with standard certification requirements. These good practices are 
especially important in forests that are dominated by evergreen taxa 
with a high wood density, in which disturbances may have a higher 
impact on community composition. In areas that are expected to be 
under high anthropogenic pressure, forest connectivity could be 
preserved by promoting agroforestry and restoration programmes, 
strictly controlling access to logging roads and stabilizing shifting 
agriculture52. Across central Africa, the highest uncertainties for the 
future of forests remain in the Democratic Republic of the Congo, 
where substantial areas that belong to the state are not yet attributed 
to any land-use category and should warrant particular attention 
owing to their high vulnerability (Fig. 4).
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Floristic and functional trait data
Forestry data were extracted from management forest inventories 
conducted in 105 logging concessions covering around 1.6 × 105 km2 
(Extended Data Fig. 1). Most companies followed a standardized inven-
tory protocol similar to that described previously53. In most cases, 
it consisted of continuous and parallel transects 20 m or 25 m wide, 
often 2–3 km apart, and subdivided into rectangular 0.4- or 0.5-ha 
plots. Overall, the full dataset had a total of 192,972 plots. Within each 
plot, trees with a diameter at breast height (DBH) ≥ 30 cm were allo-
cated into 10-cm wide diameter classes and identified at the species 
or genus level whenever possible through either commercial or local 
names53. Independent analyses performed on 298 scientific plots (≥1 ha 
in size) showed that the floristic gradients obtained with large trees 
are representative of the ones obtained with trees ≥10 cm in diameter 
(Pearson r > 0.94; Supplementary Fig. 4). Overall, around 7 × 106 trees 
were recorded. Taxonomy was revised and homogenized using the 
African Flowering Plants Database54 and the Angiosperm Phylogeny 
Group III for orders and families55. A total of 1,092 taxa were recorded 
in the original dataset. Extensive botanical controls demonstrated that 
the patterns of both intra (α)- and inter (β)- plot diversity extracted 
from these data were highly reliable53.

For the purpose of the present paper, we conducted an additional 
assessment according to botanical experts and by comparing the dis-
tributional range of our taxa with that in other datasets54,56 to select a set 
of species and genera deemed to be reliably identified over the whole 
study area (n = 195). The abundances of these taxa were aggregated in 
10 × 10-km2 grid cells across the study area, but we only kept the taxa 
occurring in at least 5% of the cells to discard taxa that cannot be stud-
ied at the regional scale (n = 2). For the statistical analyses, we kept the 
10 × 10-km2 grid cells having a field plot sampling area ≥10 ha and where 
the selected taxa represented at least 75% of the total number of indi-
viduals originally inventoried to ensure that our dataset was representa-
tive of the within-cell tree community composition. The final dataset 
contains 6.1 ×106 tree individuals belonging to 193 taxa, of which 96 
were analysed at the species and 97 at the genus levels (Supplementary 
Table 2), recorded in 185,665 plots aggregated in 1,571 10 × 10-km2 grid 
cells. Overall, the selected taxa represented 90% of the total number of 
individuals originally inventoried in the selected grid cells.

For each taxon, we compiled information on three functional traits. 
First, we extracted an average wood density using the global wood 
density database57,58 as well as other wood density data59. Wood den-
sity is an integrative trait that reflects a trade-off between tree growth 
potential and mortality risk28 and is thus highly informative on com-
munity dynamics60. It ultimately directly affects the amount of carbon 
that can be stored in the vegetation61. Second, we extracted the leaf 
phenology (deciduous or evergreen) of all taxa from the large unpub-
lished CoForTraits database62. This database compiles information on 
more than 1,000 species from central Africa with values extracted from 
the literature (mostly from local floras, academic papers and unpub-
lished theses). When several values were available for a given species 
from different sources, we attributed the one with the maximum of 
occurrences (ambiguities were left as unknown). At the genus level, 
we first computed this step for all species belonging to the genus and 
then attributed the phenology with the maximum of occurrences at 
the species level to the genus so that all congeneric species have the 
same weight in the phenology attribution. This approach relies on the 
assumption that leaf phenological traits are highly phylogenetically 
conserved63. For a few taxa (n = 5), the phenology information was 

obtained from Ouédraogo et al.30 and following these authors we con-
sidered Lophira alata Banks ex C. F. Gaertn. and Musanga cecropioides 
R. Br. as leaf exchangers; that is, with a trait value of 0.5, intermediate 
between evergreen (0) and deciduous (1). Leaf phenology is one of the 
few traits considered in dynamic global vegetation models as it affects 
the dynamics of forest productivity64. In particular, deciduousness 
indicates that tree photosynthetic activity, and thus growth, is season-
ally depressed, which has a direct effect on carbon, water and nutrient 
cycling65. Deciduousness has often been interpreted as a strategy to 
avoid water stress and is thus expected to depend on climate and soil 
conditions30,66. Finally, we used the original inventory data to calculate 
the maximum diameter as the 95th percentile value of the diameter dis-
tribution for each taxon. Maximum potential diameter, which is often 
used as a proxy of maximum height67, informs both on tree competitive 
ability for light and on the carbon sequestration potential. At the com-
munity level, it is expected to vary along gradients of productivity and 
disturbance68. Leaf phenology was successfully assigned to 89% of the 
taxa (98% of the individuals), wood density to 91% of the taxa (96% of 
the individuals) and maximum diameter to all taxa.

Climate and soil data
We considered 24 climatic predictors derived from the open Climatic 
Research Unit (CRU) dataset69 (Extended Data Table 2). We decided to 
rely on the CRU dataset as other datasets, such as WorldClim70, con-
tain erroneous observations for some climatic stations (for example, 
Ngoundi in Cameroon) that severely affected our model. Furthermore, 
our cross-validation approach showed that the CRU database led to 
higher correlations between observed and predicted taxa abundances, 
correspondence analyses scores and community weighted trait values 
than the WorldClim70 and CHIRPS71 databases (results not shown).

Soil maps have been published at the country scale in central Africa 
and their homogenization is very challenging. We thus relied on a global 
dataset, the Harmonized World Soil Database (HWSD)72, to attribute 
a soil type to each grid cell. A cross-validation analysis of our joint dis-
tribution model revealed that soil significantly improved predictions, 
mostly due to the contrast between Arenic Acrisols and the other soil 
types (Supplementary Fig. 5). To keep the model parsimonious and 
maximize its robustness, we thus merged all soil categories but the 
Arenic Acrisols soils into a single category and discarded the perma-
nently flooded areas as mapped in the open European Space Agency 
Climate Change Initiative (ESA-CCI) landcover product (v.1.6), where 
no tree inventory data were available.

Human-induced forest-disturbance intensity
Many studies have attempted to spatialize human impacts on the envi-
ronment at a large scale. In most cases, these human footprint maps 
have consisted of cumulative threat maps, assuming, for instance, 
population density and infrastructure effects73–75. Moreover, most 
of these maps relied on population statistics obtained at the level of 
administrative entities, resulting in human footprint indices with sharp 
changes at administrative boundaries76. We thus developed a statistical 
model to link the probability for a forest pixel i to be affected by anthro-
pogenic activities depending on human population density and road 
proximity through nonlinear relationships. This resulted in a spatially 
continuous index representing human-induced forest-disturbance 
intensity that can be projected in space and/or time following prede-
fined scenarios of human population dynamics (Extended Data Fig. 8).

We calibrated this index with the ‘Settlement Points’ dataset pro-
duced under the Global Rural Urban Mapping Project (Grumpv1). This 
dataset provides estimates of human population (counts, in number 
of people (individuals)) for the year 2000 using a proportional alloca-
tion gridding algorithm (1-km2 grid) based on more than 1,000,000 
national and subnational geographic units. Focusing on central Africa, 
we compared this product with the Natural Earth Populated Places 
product (v.3.0.0; http://www.naturalearthdata.com/downloads/

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/


10m-cultural-vectors/10m-populated-places/; last accessed 7 October 
2018) derived from the LandScan (https://earthworks.stanford.edu/
catalog/stanford-yj715rc4110#iso-metadata-reference-info) dataset 
(pixels with fewer than 200 individuals per km2 were discarded). The 
total number of populated points in central Africa (longitude 5.6 to 39.8, 
latitude −9.8 to 7.5 in decimal degrees) was 807 and 376 for the Grumpv1 
and Natural Earth products, respectively. We thus performed a random 
manual check of the populated places present in Grumpv1 and absent 
from Natural Earth (the reverse rarely occurred) using Google Earth 
images and found that in all cases Grumpv1 was correct. We finally used 
the Grumpv1 dataset, which mostly provides information on populated 
places with more than around 1,000 people. Because smaller popula-
tions may have a substantial impact on forests, we added to this dataset 
the populated locations of the category ‘towns’ from OpenStreetMap 
(https://data.maptiler.com/downloads/planet/#1.59/-17.3/19.7; last 
accessed 2 October 2018), assuming by default that they all contained 
500 people (OpenStreetMap does not provide systematic information 
on population size).

The road network was extracted from the Global Roads Open 
Access Data Set, v.1 (https://sedac.ciesin.columbia.edu/data/set/
groads-global-roads-open-access-v1; last accessed 14 September 2018), 
a dataset combining road data by country. Note that logging roads are 
not fully represented in this dataset, so we may underestimate their 
effect in this study. A few roads from the northern Republic of the Congo 
were corrected using data from OpenStreetMap. Preliminary analyses 
revealed that further accounting for the railway and river networks did 
not improve predictions of tree taxon and community distributions.

Our index was thus calculated as followed. Let zi, i = 1,…, n be n ran-
dom variables indicating the disturbance status of pixel i: 0 if the pixel 
is undisturbed and 1 if disturbed. We assumed that zi is distributed as 
a Bernoulli variable:
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where IPi(θ) is a synthetic index describing the influence of the popula-
tion density of all populated places on pixel i (see below), θ is an 
unknown parameter to be inferred, and IRi
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weight depends on both the distance between pixel i and populated 
place j, δij, and on the population size Nj:

( )

( )

N

N

IP =
∑ e + 1

max ∑ e + 1

i
θ j

n
j

j
n

j

−

−

δij

Nj
θ

δij

Nj
θ

log

log

We finally calibrated the θ parameter using two reference areas of 
around 190,000 km2 (Supplementary Fig. 6). These two areas were cho-
sen because they cover contrasting conditions, are well known by our 
team and were found to be little influenced by atmospheric pollution 
in the MODIS data. Degraded versus intact forests were identified from 
a recently published MODIS-based regional vegetation map20. Using 
a likelihood optimization approach in these two areas, we obtained 

θ = 1.27 and 1.71 in calibration areas 1 and 2, respectively, indicating that 
under a similar anthropogenic context, forests tend to be disturbed at 
a greater distance from sources of anthropogenic disturbance in the 
second calibration area. The final human-induced forest-disturbance 
intensity index was thus calculated with θ = 1.49, the average estimate 
for the two calibration areas, over the whole central African forest 
domain, thus avoiding the risk of artefacts related to atmospheric 
pollution, from which satellite products suffer, especially over Gabon.

This index, built independently from our floristic dataset, outper-
formed previously published indices to predict floristic composition 
in our study area. Using a simple linear model, with individual anthro-
pogenic indices as single predictors, the mean wood density of tree 
communities was better predicted with our new index (r = 0.33) than 
with the WorldPop77 (r = 0.30), LandScan (r = 0.15) and Venter74 (r = 0.23) 
indices. Similarly, using a simple generalized linear model with a Pois-
son distribution to predict the abundance of Musanga cecropioides—the 
most widespread and abundant short-lived pioneer taxon over central 
African forests—revealed a better performance of our index (r = 0.35) 
compared to previous indices (r = 0.31, 0.11 and 0.26 for WorldPop, 
LandScan and Venter, respectively).

Statistical model
To predict the joint taxa distributions we relied on a recently devel-
oped methodology called supervised component generalized linear 
regression (SCGLR)17, which identifies the most predictive dimensions 
among a large set of potentially multicollinear predictors. SCGLR is 
an extension of partial least-squares regression (PLSR) to the uni- and 
multivariate generalized linear framework. PLSR is particularly well 
suited for analysing a large array of correlated predictor variables, and 
many studies have demonstrated its ability for prediction in various 
biological fields, such as genetics78 and ecology79. Although PLSR is well 
adapted for continuous variables, SCGLR is suited for non-Gaussian 
outcomes and noncontinuous covariates. It is a model-based approach 
that extends PLSR80, principal component analysis (PCA) on instrumen-
tal variables81, canonical correspondence analysis82 and other related 
empirical methods by maximizing a trade-off between goodness of fit of 
the model and the quantity of information that the components capture 
from the climatic variables. This information is measured through an 
indicator of ‘structural relevance’ (SR)83, which uses bundles of highly 
correlated variables to attract components to rich and robust infor-
mational dimensions.

The components are sought as K linear combinations of environmen-
tal variables common to all species with coefficient vectors denoted 
u = u1,…,uK (under norm and orthogonality constraints). SCGLR also 
estimates the corresponding q × K (number of species by number of 
components) matrix of unknown parameters γ to maximize the fol-
lowing convex sum:

s ψ u γ s ϕ ulog ( , ) + (1 − )log ( )l

where ψ is the likelihood and φl is the SR. s and l are tuning parameters. s is 
related to the trade-off between goodness of fit and structural relevance. 
l is a non-negative scalar related to the narrowness of the bundles of 
climatic variables the components are wanted to align with. The K cli-
matic components (CCs) are then equal to CCk = Xuk, k= 1,…,K and can be 
understood as the main environmental directions predicting all species 
simultaneously, whereas γj, j = 1…, q are the magnitude of the effects of 
the K components on the abundances of each species. Then, the spe-
cies abundances of each taxon j = 1,..., 193 on the grid cell i = 1,..., 1,571 
are modelled using a generalized linear Poisson regression such that:

( )y P S λij i ij∼

( )λ X β T α X uγ T α γ T αlog = + = + = CC +ij i j i j i j i j i j i j
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where X denotes climatic variables (Extended Data Table 2), Si is an 
offset corresponding to the number of plots within each grid cell, and 
T is a set of covariates known to affect species abundances: here, the 
soil type and the human-induced forest-disturbance intensity index, 
as well as its logarithm to account for nonlinear responses.

The number of components (K) as well as the tuning parameters 
(l and s) must appropriately be chosen. This was done with a 10% 
cross-validation procedure in which the criterion used was the har-
monic mean of the mean square prediction error (MSPE) across the 
194 taxa. A dedicated R package, SCGLR84, is available (see also https://
github.com/SCnext/SCGLR).

To assess the predictive power of our model, we performed a 
leave-one-block-out cross-validation in which our dataset was divided 
into 40 spatial clusters identified with a Ward’s hierarchical clustering85 
of plot coordinates86 (Supplementary Fig. 7). All clusters but one were 
used for training the model (that is, calibration dataset) and the remain-
ing cluster was used for validating the model. We repeated this proce-
dure 40 times such that all clusters were used once in the validation 
dataset and participated in the model assessment. Model validation was 
performed through the use of nonparametric Spearman’s rank correla-
tion coefficients between observations and predictions. For individual 
taxon abundances, correlations were estimated using observed and 
predicted abundance per taxon. For taxon assemblages, a correspond-
ence analysis (CA) was performed on the grid cell × observed species 
abundance matrix, providing the observed CA axes. The predicted 
site scores on each CA axis were then obtained by projecting the grid 
cell × predicted species abundance matrix in the observed CA planes. 
Correlations were computed on the observed and predicted site scores 
(that is, loadings) enabling us to assess the ability of our model to pre-
dict the main floristic gradients across our area. Finally, for the three 
functional traits, correlations were estimated on the grid-cell-based 
community weighted mean (CWM) traits27 calculated on observed and 
predicted taxon assemblages.

Taxon abundances and community composition were predicted 
across the entire study area in a regular 10-km grid. To predict the flo-
ristic composition of the existing forests, we first used the ESA-CCI 
landcover product (v.1.6) to only keep grid cells that are likely to be 
forested (that is, category ‘broadleaved evergreen’). Then, we only 
selected grid cells that had a combination of predictor values similar to 
those in the calibration dataset. To do this, we used a three-dimensional 
(3D) convex hull algorithm on the three climatic components to exclude 
all the grid cells that had a combination of predictors different from 
that represented in the calibration dataset. This resulted in 12,295 grid 
cells, representing 85% of the central African forests; that is, an area of 
around 1,230,000 km2.

We finally used the Ward’s hierarchical clustering method to classify 
the predicted floristic composition into broad floristic types. Group 
classification was done on the first five axes of a CA performed on pre-
dicted taxon abundances, accounting for 77% of the total inertia. The 
number of retained types was chosen based on our expert knowledge. 
The uncertainty associated with this classification was then assessed 
through Gaussian finite mixture models87 (repeated 500 times) using 
a spherical, equal volume model (EII).

Spatially explicit null models
Whenever predictors and observations are spatially structured, model 
errors of type I (false positive associations) are inflated88, hindering 
our capacity to extrapolate predictions in space or time22. We thus 
built a spatialized null model to test the degree to which the success-
fulness of our predictions resulted from an actual relationship with 
climatic variables or was simply due to spatial costructures between 
taxon distributions and climatic gradients that arose by chance. We 
used the RGeostats R package89 to simulate sets of SCGLR CCs hav-
ing similar spatial properties to those of the observed CCs as well 
as similar spatial costructures between them. This step consisted of 

fitting theoretical variograms and covariograms to empirical ones to 
simulate random realizations that can be then used as ‘null’ spatialized 
predictors (Supplementary Figs. 8, 9). We simulated 500 sets of ‘null’ 
spatialized predictors and used them as predictors in our GLMs using 
the leave-one-block-out cross-validation described above. The result-
ing correlations between observed and predicted taxon abundances, 
and axes scores (for taxon assemblages) were finally compared with 
the correlations obtained when observed climatic predictors were 
considered. The resulting P values were calculated as the number of 
times a simulated correlation was higher than the observed one, divided 
by the total number of realizations (n = 501).

Forest vulnerability to global change
Vulnerability to climate change, as assessed through the IPCC frame-
work, is composed of three components: (1) sensitivity, (2) exposure 
and (3) adaptive capacity to climate change.

Sensitivity to climate change, Sensitivityclim, was first estimated at 
the taxon level in a similar way to that described previously34. For each 
taxon, we calculated the mean of the weighted standard deviation 
(SDw) of the three climatic components (CCs) at the present time, using 
locally observed taxon abundances as weights. SDw thus represents 
the width of the climatic niche currently occupied by the taxa. 
Taxon-specific climate sensitivity was then measured as 1/SDw (it 
increases as niche width decreases). To upscale tree sensitivity to cli-
mate change at the community level and over our study area, sensitiv-
ity was measured as the CWM of taxon-specific climate-sensitivity 
scores, using predicted taxon assemblages.

Exposure to climate change, Exposureclim, was assessed using pro-
jected changes in climate from 18 unique climate model combinations 
provided by the AFRICLIM v3.0 dataset90 (last accessed 3 February 
2020). These models corresponded to pairwise combinations of five 
regional climate models (RCMs) driven by 10 general circulation mod-
els (GCMs), with an unequal number of GCMs models per RCM (10 
models for the Swedish Meteorological and Hydrological (SMHI) RCM, 
four for the Climate Limited-area Modelling Community (CLMCOM) 
RCM, two for the Royal Netherlands Meteorological Institute (KNMI) 
RCM, one for the Canadian Centre for Climate Modelling (CCCMA) 
RCM and one for the Danish Meteorological Institute (DMI) RCM). 
These models were generated using change-factor downscaling 
approaches to model spatial variation at local scales while correcting 
for differences between observed and simulated baseline climates (see 
ref. 90 for more details). We here concentrated on one representative 
concentration pathway of the IPCC AR5 (RCP 4.5) for the late 21st cen-
tury (2071–2100; hereafter named 2085) and reconstructed the three 
SCGLR selected CCs from the climatic predictions as follows: let Xrcp4.5 
be the predicted future climatic conditions and let m X=  and S = sd(X) 
be the mean and standard deviation matrices of the current climatic 
conditions. The predictive climatic components under future sce-
narios are then equal to f X m Su= ( − ) ˆrcp4.5 rcp4.5 , where û represents 
SCGLR CCs. We then calculated the Euclidean distance between the 3 
current and the 3 predicted CCs for each of the 18 models and then 
estimated the exposure to climate change as the mean distance over 
the 18 models.

Adaptive capacity to climate change, Adaptiveclim, was assessed 
through the phylogenetic diversity of predicted assemblages at the 
genus level. We used a recently published dated phylogeny91, covering 
167 out of our 180 genera (representing 94% of predicted individuals). 
We first tested if the studied taxa exhibited a significant conservatism 
in their climate niches using Abouheif’s permutation tests92 on the 
taxa-specific score (γ) values on the three SCGLR climate components 
(γ represents the influence of a CC on a given taxa distribution; see 
above). We then measured the phylogenetic diversity (PD) of predicted 
assemblages at the genera level using the Chao’s PD index with an order 
q of 1 (equivalent to the Shannon index)93 that we used as a proxy of 
adaptive capacity.

https://github.com/SCnext/SCGLR
https://github.com/SCnext/SCGLR


Vulnerability to climate change, Vulnerabilityclim, was finally esti-
mated as the sum of the three standardized (st) (0 to 1) components:

( )Vulnerability = Sensitivity + Exposure − Adaptive .clim clim
st

clim
st

clim
st

Vulnerabilityclim theoretically ranges from −1 (low vulnerability) to 
2 (high vulnerability) and, owing to the standardization of its three 
components, it expresses a relative vulnerability over the study area 
and is thus little affected by the IPCC scenario chosen (RCP 4.5 or 8.5) 
because different scenarios predict different amplitudes of changes 
but similar spatial patterns (Extended Data Fig. 7).

Forecasted human impact on forests in 2085 was assessed using 
our human-induced forest-disturbance intensity index combined 
with country-specific projections of human populations in 2085. We 
assigned to each current town a country-specific relative population 
increase drawn from the United Nations World Population Prospects2 
and rebuilt our index based on this modified dataset. This approach 
did not account for new roads that might be established by 2085, and 
thus tended to underestimate the increase in anthropogenic pressure.

Software and packages
All analyses were performed and figures were created with R94, mostly 
using the ade495, alphashape3d96, ggplot297, raster98, RGeostats89, entro-
part99 and SCGLR84 (https://github.com/SCnext/SCGLR/) packages. 
Data are archived in a public repository (https://doi.org/10.18167/
DVN1/UCNCA7).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All maps and data used for this article are accessible online in a public 
repository at https://doi.org/10.18167/DVN1/UCNCA7. Raw floristic 
data are, however, archived in a private data repository, owing to the 
highly sensitive nature of commercial inventory data, and access may 
be granted for research purposes using the form provided in the public 
repository.

Code availability
R scripts are available at https://github.com/MaximeRM/ScriptNature.
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Extended Data Fig. 1 | Study area and sampling plots. In green, the current 
distribution of tropical forests following the ESA-CCI landcover product (v.1.6), 
with a dark-green-to-white gradient representing anthropogenic pressure 

(see Methods) and non-forested areas represented in beige. The sampling grid 
cells (n = 1,571 10 × 10-km2 grid cells) are in black and the flooding forests, as 
proposed by the ESA-CCI landcover, are in blue.
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Extended Data Fig. 2 | Taxon CA planes 1–2 and 1–3 with labels for the 12 
most representative taxa on each axis. a, Planes 1–2. b, Planes 1–3. Colour 
code corresponds to that reported in Fig. 1. The first eigenvalues are reported 

in b, highlighting in black the first three axes. Taxon codes and scores of the 193 
taxa are provided in Supplementary Table 2.



Extended Data Fig. 3 | Individual predicted floristic gradients illustrated 
by the three first axes of the correspondence analysis performed on 
predicted taxon abundances. a–c, CA axis 1 (a), CA axis 2 (b) and CA axis 3 (c). 

A composite map of these three axes is given in Fig. 1 and the corresponding 
taxon CA planes are provided in Extended Data Fig. 2.
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Extended Data Fig. 4 | Plans 1–2, 1–3 and 2–3 of the SCGLR CCs. a, CC1 and CC2. b, CC1 and CC3. c, CC2 and CC3. All climatic variables with a correlation of less 
than 0.75 with the two components (dashed circle) were excluded for the sake of clarity. For abbreviations, see Extended Data Table 2.



Extended Data Fig. 5 | Spatial cross-validation results of the predictions of 
functional assemblages. a–c, The observed and predicted community 
weighted mean trait values within the 1,571 10x10-km2 grid cells are given for 

wood density (a), deciduousness (b) and maximum diameter (c). The 1:1 line is 
displayed in red.
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Extended Data Fig. 6 | Projected changes under the RCP 4.5 scenario in 
2085 of the climatic conditions of the 10 forest types. Areas for which 
climate models predict similar climatic components (CCs) values to those 
currently found within forest types (in black) are illustrated with a colour 
gradient indicating the level of agreement amongst the 18 climate models  

(as a percentage; no colour indicates that none of the original 18 climate 
models predicted similar conditions). More specifically, we used 3D concave 
hull (alpha shape) models to assess where the combinations of current CCs 
corresponding to each forest type are predicted to be represented in 2085.



Extended Data Fig. 7 | The vulnerability map under two different RCP 
scenarios and for two different years. a–d, Vulnerability maps under RCP 4.5 
in 2055 (a), RCP 8.5 in 2055 (b), RCP 4.5 in 2085 (c) and RCP 8.5 in 2085 (d). As 
can be seen, the predicted vulnerability is little affected by the IPCC scenario 

chosen because it expresses a relative vulnerability over the study area and, if 
different scenarios predict different amplitudes of climate change, spatial 
patterns of climate exposure remains similar (see Methods).
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Extended Data Fig. 8 | Current and projected anthropogenic pressure over central Africa. a, b, Current (a) and projected (b) anthropogenic pressure 
predicted from our index of human-induced forest-disturbance intensity.



Extended Data Fig. 9 | Protected area network and areas dedicated to 
logging activities in central Africa. The protected area network is shown in 
blue; areas dedicated to logging are shown in orange and red. Data on 
protected areas were obtained from the World Database on Protected Areas 
(https://www.iucn.org/theme/protected-areas/our-work/world-database- 
protected-areas, last accessed 14 August 2018), excluding marine, hunting and 
game-oriented areas, except for the Democratic Republic of the Congo, for 
which data from the World Resource Institute were used and downloaded from 
ArcGIS hub (https://hub.arcgis.com/datasets/1bcd463cbb6549c9a0676edb9

f751f9b, last accessed 1 June 2019). Logging activity data were provided by the 
Observatoire des Forêts d’Afrique Centrale based on an unpublished work 
completed in June 2018, except for the Democratic Republic of the Congo, for 
which more updated data (June 2019) were provided by the AGEDUFOR 
national project. Areas in orange illustrate forest concessions that are known 
to have, or to be in the process of having, an officially validated sustainable 
forest management plan. Red areas illustrate forest areas that are currently 
dedicated to logging but that either do not have an official management plan or 
have an uncertain status.

https://www.iucn.org/theme/protected-areas/our-work/world-database-protected-areas
https://www.iucn.org/theme/protected-areas/our-work/world-database-protected-areas
https://hub.arcgis.com/datasets/1bcd463cbb6549c9a0676edb9f751f9b
https://hub.arcgis.com/datasets/1bcd463cbb6549c9a0676edb9f751f9b
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Extended Data Table 1 | Characteristics of the floristic groups

 
For each floristic group, information is provided on the three most abundant families (Angiosperm Phylogeny Group (APG) III classification, except for the subfamilies Caesalpiniaceae and 
Mimosaceae, which were considered here independently owing to their different ecological strategies), the five most representative taxa (that is, taxa having the highest A score of the Dufrêne 
and Legendre index100), the total area (km2) covered by each group, the percentage of the area covered by protected areas (PA) and dedicated to logging activities (Logging), the mean 
probability of being affected by human activities (Phum, this study) and the mean value of the three climatic components (CCs) that best explain the current distribution of central African trees  
(this study).



Extended Data Table 2 | Climatic predictors

Correlations with the three climatic components (CCs) are given in the last three columns (see also Extended Data Fig. 4). 
ameanET0 was calculated using the Hargreaves formula with nmeanET0 1/ ( ET0 ),ii

n
1= ∑ =  where ET0i is the evapotranspiration of month i calculated as ET0i = 0.0023 × 0.408RAi × (Tavgi + 17.8) × TDi

0.5,  
in which RAi is the mean extrasolar radiation of month i in MJ m−2 d−1, Tavgi is the average daily temperature of month i in °C, computed as the average of the mean maximum and minimum 
temperature of month i, and TDi is the mean temperature range of month i in °C, computed as the difference between the mean maximum and minimum temperature of month i. 
b = ∑ −=n PmeanCWB 1/ ( ET0 ),i ii

n
1 where Pi is the precipitation of month i. 

c,d = ∑ =sumCWD CWDii
n

1  and maxCWD = max(CWDi), where = ∑ =CWD WD ,i ii
n

1  with WDi = WDi − 1 + Pi – ET0i if (WDi−1 + Pi – ET0i) < 0 or WDi = 0 if (WDi − 1 Pi – ET0i) ≥ 0. To compute CWDi, the wettest 
month was set as i = 1 at the grid-cell level. 
e = ∑ −= PMCWD min(0, ET0 ).i ii

n
1
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