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Africais forecasted to experience large and rapid climate change' and population
growth? during the twenty-first century, which threatens the world’s second largest
rainforest. Protecting and sustainably managing these African forests requires an
increased understanding of their compositional heterogeneity, the environmental
drivers of forest composition and their vulnerability to ongoing changes. Here, using a
very large dataset of 6 million trees in more than 180,000 field plots, we jointly model
the distribution in abundance of the most dominant tree taxain central Africa, and
produce continuous maps of the floristic and functional composition of central African
forests. Our results show that the uncertainty in taxon-specific distributions averages
outat the community level, and reveal highly deterministic assemblages. We uncover
contrasting floristic and functional compositions across climates, soil types and
anthropogenic gradients, with functional convergence among types of forest that are
floristically dissimilar. Combining these spatial predictions with scenarios of climatic
and anthropogenic global change suggests a high vulnerability of the northern and
southern forest margins, the Atlantic forests and most forests in the Democratic
Republic of the Congo, where both climate and anthropogenic threats are expected to
increase sharply by 2085. These results constitute key quantitative benchmarks for
scientists and policymakers to shape transnational conservation and management
strategies that aim to provide a sustainable future for central African forests.

Concomitant increases in climate stress, human population needs
and resource extraction in central Africa raise environmental con-

how these forests will face upcoming global changes and, ultimately,
to anticipate—on scientific bases—how to protect and manage them

cerns®>. These threats may have considerable impacts on the carbon
budget®, climate’ and biodiversity of central African forests®, which
shelter some of the world’s most iconic wildlife species and which are
already experiencing a much drier and seasonal climate than other
tropical forests’. However, the current composition of central African
forests and its determinants at regional scale are still poorly known,
oftenbeingstudiedinlimited areas'® *and datasets®or atavery coarse
grain with heterogeneous occurrence records™. Vast regions of cen-
tral African forests remain poorly explored scientifically®, and most
space-borne systems of Earth observation provide very limited informa-
tion on forest composition'. This hinders our ability to understand how
the composition and functions of forests vary regionally, to forecast

beyond national boundaries.

Inthis study, we used an extensive dataset of forestinventories to (1)
model the main floristic and functional gradients over central African
forests; and (2) assess their expected vulnerability under forecasted
conditions of global (climatic and anthropogenic) change. We com-
piled the abundance distributions 0f 193 dominant tree taxain 185,665
field plots (around 90,000 ha) from commercial forest inventories
spread over the 5 main forested countries in central Africa (Cameroon,
Central African Republic, Democratic Republic of the Congo, Gabon
and Republic of the Congo) (Extended Data Fig. 1). We modelled the
joint distributions of taxon abundances at 10-km resolution using
supervised component generalized linear regression (SCGLR)",
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Fig.1|Floristiccomposition of central African forests. a, Spatialized RGB
composition of the three first axes of a correspondence analysis (CA)
performed onjointly predicted taxon abundances at10-kmresolution (n=193
taxa;axis1, blue; axis 2, red; axis 3, green). Grey crosses represent forested
areas outside the calibration domain, including permanently flooded forests,

amodelling method that extends partial least-squares regression to
the multivariate generalized linear framework. SCGLR models a set of
responses (here the abundances of taxa) from synthetic orthogonal
explanatory components derived from 24 climatic variables (here-
after, climatic components, CCs) and additional soil type (here, sand
versus clay) and anthropogenic pressure covariates. We developed for
this study an index, based on population density and road networks,
that is specifically designed and calibrated to predict the intensity of
recenthuman-induced forest disturbancesin central Africa (see Meth-
ods). Finally, thanks to the very large size of the dataset, the predicted
floristic and functional gradients were cross-validated with spatially
independent observations using Spearman correlation coefficients, pcy.

Floristic compositionin central Africa

Our model predicted individual taxon abundances with an overall
median correlation p., of 0.48 (range of —0.11 to 0.83). This median
value was still as high as 0.45 when unoccupied sites were removed,
showing that, beyond presence and absence, our model also captured
variationsin abundance within a taxon’s distributional range. A corre-
spondence analysis (CA) performed on the predicted taxon abundances
revealed major regional floristic gradients (Fig. 1, Extended Data Figs. 2,
3) that were highly correlated with the observed gradients (pc, =0.89,
0.71and 0.6 for CA axes 1, 2 and 3, respectively; Fig. 1b-d). Contrary
to Amazonian and Southeast Asian forests, in which soil was shown to
be the primary large-scale driver of tree community composition'®",
the most prominent floristic gradient predicted here (CA axis 1) was
highly related to climate, and in particular to the first predictive CC
(Pearson’sr=0.98), contrasting areas with a cool and light-deficient®
dry season (coastal Gabon) and areas with high evapotranspiration
rates (northern limit of the central African forests; Extended Data
Fig.4). The second predicted floristic gradient (CA axis 2) was highly
correlated with the two other CCs (r=-0.86 and —0.72 for CC2and CC3,
respectively) related to seasonality and maximum temperature, thus
contrasting equatorial areas with a low water deficit and areas with a
high water deficit towards the limits of the tropics. Climate seasonality
was also found tobe amajor driver of tree community compositionin
Amazonia®™, and maximum temperature has recently been identified
as the most important pantropical driver of forest biomass, affecting
woody productivity®. The third predicted floristic gradient (CA axis 3)
revealed floristic variations that are more local and that highlighted
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and country boundaries arerepresented in black. DD, decimal degrees.b-d,
Cross-validation results comparing the observed and predicted CA gradients
foraxis1(b),axis2(c)and axis3 (d). Thel:1lineis displayedinred. Taxon CA
planes1-2and1-3are providedin Extended DataFig.2.

human-disturbed forests (r= 0.67 with our index of human-induced
forest-disturbance intensity).

As already shown in previous studies?*?, the association between
taxondistributions and climate patterns may appear by chance because
both are spatially autocorrelated at the regional scale. We thus used a
spatially explicit nullmodel that randomized the predictive CCs while
preserving their spatial (co)structures. When keeping the soil type
and human impact on forests unchanged, the null model predicted
abundances with asimilar predictive power to the model based onthe
original CCs for 67% of the taxa (P> 0.1). This suggests that variationin
taxon abundances directly depends on climate for aminimum of only
one-third of the taxa, whereas for most of them, abundance may cor-
relate with climate by chance only. By contrast, the association between
climate and the main gradients of floristic assemblages was robust to
autocorrelationartefacts (P=0.028,0.006 and 0.06 for CA1, CA2 and
CA3, respectively). Thisresult confirms that extrapolating assemblages
from climate variables is more reliable than extrapolating individual
taxon abundances*. Indeed, individual taxon abundances are likely to
beless predictable on the basis of only current drivers as they are also
affected by unknown past human disturbances®, biotic interactions
andbiogeographical history?, the idiosyncratic effects of which tend
to average out at the community level.

Functional compositionin central Africa

From the predicted floristic assemblages, we computed the commu-
nity weighted mean® of three functional traits that are known to have
a central role in ecosystem processes: wood density, deciduousness
and maximum diameter (Fig. 2). The predicted functional composi-
tion was consistent with the observations (p.,=0.47,0.75and 0.45 for
the three traits, respectively; Extended Data Fig. 5). As in Amazonia'®,
community wood density varied with soil type, with the highest values
found forsandy soils that are located at the boundaries of Cameroon,
the Republic of the Congo and the Central African Republic, and where
tree species with conservative resource-use strategies predominate®.
However, larger-scale variationsin wood density were primarily driven
by human-induced forest disturbances; community wood density was
lower in human-disturbed forests, indicating that they are mostly
composed of fast-growing taxa®®. Notably, these areas also containa
high proportion of trees that can potentially reach a large diameter.
These two results indicate that human-disturbed forests tend to be
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Fig.2|Predicted functional composition of central African forests. a-c, Predicted community weighted functional trait values (wood density (a), deciduousness

(b) and maximum diameter (c)) at 10-km resolution.

dominated by long-lived pioneer taxa, which are characterized by a
lowwood density but alarge potential stature and thus offer afastand
relatively long-lasting carbon sink potential in the absence of distur-
bances®. Finally,amarked deciduousness gradient ran from the highly
evergreen forests of coastal Gabon to the northernlimit of the central
African forests with, again, a well-known exception on the northern
sandy soil plateau™.

Areference map of forest types

To ease practical applications, we performed hierarchical clustering
of the predicted floristic gradients (pixel scores on the first five CA
axes), which are continuous by nature, and identified ten major types
of forest (Fig. 3; Extended Data Table 1). The strongest floristic dis-
similarity appeared between Atlantic forests (types1-3) and the other
forest types (4-10), within which semi-deciduous seasonal forests were
clearly distinguished (types 4-6). We also observed functional conver-
gences among floristically dissimilar types of forest and vice versa. For
example, despite having a regional species pool similar to deciduous
forests (types 4 and 6), sandstone forests (type 5) have a functional
composition thatis closer to remote forest groups (for example, types
2,3,7and 8), with a high wood density and low deciduousness. Soil
filtering modifies the relative abundance of species (rather than their
presence or absence®), favouring suitable functional attributesin poor
sandy soils™. By contrast, although Atlantic forests (types 1-3) have
little taxonomic affinity with the east-central and southern forests
(types 7 and 8), they show a similar functional composition owing to

climate conditions that are more similar, as represented on the first
predictive CC (Extended Data Table 1). This confirms that although
taxonomic composition hasanimportant biogeographical component,
the functional composition of tree communities can converge in similar
environmental conditions.

Vulnerability to global change

For the 10 forest types, most climate models predict current climate
conditions either to virtually disappear from central Africa (for exam-
ple, types2and5; Extended DataFig. 6), or to move at spatial and tem-
poral scales that are incommensurate with tree dispersal ability (for
example, types 4 and 6). This suggests that current forest communities
willnotbeabletotrack their present climate envelopes and will facethe
emergence of novel climates, making the prediction of taxon distribu-
tions under future climate projection highly risky*’. We thus assessed
the vulnerability of central African forests to climate change through
their sensitivity, exposure and adaptive capacity, following the recom-
mendation of the Intergovernmental Panel on Climate Change (IPCC)*.

We quantified sensitivity at the community level using the inverse of
the current climate niche breadth of taxa (Fig. 4c) and assuming that
assemblages dominated by taxawith narrow environmental tolerances
willbe more vulnerable to upcoming changes®. Sensitivity appeared to
be highin coastal Gabon (type 2), where ahigh level of species endemism
exists®, and in the driest northern margin of central African forests.
Recentstudies consistently showed that drier tropical forests exhibited
larger functional changes than wetter forests in response to along-term
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Fig.3|Mainforest typesacross central Africaand their functional
composition. a, Forest-type classification obtained by hierarchical clustering
ofthe predicted floristic gradients. Colours represent an RGB composite of the
mean values of the three functional traits per forest type (see Fig. 2); that s,
wood density (red), deciduousness (green) and maximum diameter (blue).
Thus, similar coloursillustrate a similar functional composition. b, Taxonomic
relationships amongthe forest typesillustrated by a clustering dendrogram
(top) and abox plot of the standardized predicted functional composition over

the12,295grid cells (bottom), with wood density inred, deciduousness in
greenand maximum diameter in blue (medianisreported at the centre, the
lower and upper hinges correspond to the first and third quartiles and the two
whiskers extend from these two quartiles to the largest and smallest values, at
most1.5timestheinterquartile range from the hinge). Forest-type names and
additionalinformation are provided in Extended Data Table 1. Clustering
uncertaintyisreportedin Supplementary Fig. 1.
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Fig.4 |Predicted vulnerability of central African tree communities to
global changes. a, Composite map of the vulnerability to climate change and
ofthe forecasted human-induced forest-disturbance intensity by 2085. Areas
inmagentaare predicted tobe the most vulnerable to both climate change and
anthropogenicpressure; areasingreenare predicted tobeto theleast
vulnerable to both climate change and anthropogenic pressure; areasin blue
arepredicted to be the most vulnerable to climate change but the least
vulnerable to anthropogenic pressure; and areasin orange are predicted to be
theleast vulnerable to climate change but the most vulnerable to
anthropogenicpressure. b, Projected human-induced forest-disturbance
intensity in2085. c-e, Vulnerability to climate change was estimated as the
sensitivity to current climate (c) plus the exposure to forecasted climate
changes by 2085 (under the RCP 4.5 scenario) (d) minus the adaptive capacity
of tree communities using phylogenetic diversity as a proxy (e).

drought in west Africa® and are likely to be more sensitive to global
warming?®. By contrast, forests from northwest Cameroon showed a
relatively low sensitivity to current climate conditions, probably because
these forests are dominated by widespread tree taxa that are adapted
to anthropogenic pressure (Fig.2). Long-lived pioneer taxa—typical of
these human-disturbed forests—are also expected to be favoured by a
possible accelerationin forest dynamics induced by global change®?8,

Exposure to climate change was quantified as the extent to which
the current climate determinants (CC1-CC3) are expected to change
by 2085, using 18 unique bias-corrected climate model combinations
(under the IPCC Assessment Report 5 (AR5) RCP 4.5 scenario; see
Extended Data Fig. 7 for other scenarios). We found that exposure
to climate change was mostly driven by an increase in drought stress
and maximum temperature**® (Supplementary Fig. 2). The central
and east part of central African forests are predicted to be the most
exposed, particularly in the south of the Democratic Republic of the
Congo (Fig. 4d). Note, however, that climate-change predictionsin
central Africa are uncertain because meteorological data for model
validation are lacking* (Supplementary Fig. 3).
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Finally, we assessed the adaptive capacity of tree communities
through their evolutionary potential. We first found highly significant
niche conservatismalong the first two climate components (P<0.002).
This indicates that closely related taxa tend to share similar climate
niche spaces at the regional scale, and suggests that they could be
affected similarly by future climate change. We therefore assumed that
higher local phylogenetic diversity provides awider range of potential
responses to novel climate conditions*’, in a similar manner to the
insurance hypothesis*. We thus used the phylogenetic diversity of
predicted tree assemblages as a proxy of their adaptive capacity to
climate change. Undisturbed semi-deciduous and transitional forests
(types 6 and10inFig. 3) appeared phylogenetically more diverse than
evergreen forests (Fig. 4€). A recent study in Amazonia*? also found a
peak of phylogenetic diversity at anintermediate level of precipitation,
at which dry- and wet-adapted lineages are mixing. As expected*®, we
also found that human-disturbed areas tended to have alow phyloge-
netic diversity.

Theresulting vulnerability of tree communities to climate change
did not correlate with the expected humanimpact on forestsin 2085
(p=-0.08), which was assessed here by using country-specific projec-
tions of human population growth (Fig. 4a, Extended DataFig. 8). Vul-
nerability to climate change is expected to be higher for communities
that are dominated by hard-wooded taxa (p = 0.46 withwood density,
Supplementary Table1). By contrast, the forecasted human impact on
forestsis predicted to be higher in already disturbed communities;
thatis, those that are dominated by light-wooded taxa with a large
potential size (p=-0.4 and 0.43 for wood density and maximum size,
respectively). However, because we did not account for the appear-
ance of new roads by 2085, we may have underestimated the effect
of future anthropogenic activities in remote, currently undisturbed
forests. Vulnerability to both climate change and anthropogenic
activities (pink colourin Fig.4a) is predicted to be high for forests of
coastal Gabon, inlarge areas of forests from Democratic Republic of
the Congo, and in the northern margin of the forest domain. Forests
from Cameroon and in the south of the Republic of the Congo mostly
appear vulnerable owing to the high expected humanimpact onfor-
estsby 2085 (orange patchesin Fig. 4a). By contrast, the tri-national
Sangha transboundary forest complex and the northeastern part of
Gabon appeared to be the least vulnerable area in the region (large
green patch in Fig. 4a). Globally, the Democratic Republic of the
Congo, where most of the central African forests are located, mainly
contains foreststhat are predicted to be vulnerable to climate change
and/or to anthropogenic pressure (blue to pink patches in Fig. 4a).

Conclusions and perspectives

Although some country-specific vegetation patterns were already sug-
gested by phytogeographers (for example, refs. ****), here we provide
whatis to our knowledge the first synoptic view of central African forest
compositionatafine resolution, based on avastamount of quantitative
data. Unveiling the functional composition of central African forests
provides key insights into their functioning, dynamics and carbon
uptake potential, and the ways in which they could respond to global
change. Accounting for the functional characteristics of forests can
considerably reduce uncertainty in large-scale models of vegetation*®
or improve remote sensing approaches; for example, by assimilating
large-scale variation in wood density into forest carbon maps*. Our
maps may also help scientists to design representative sampling to bet-
ter understand the long-term impact of climate change on tree species
and stand dynamics; for example, monitoring underrepresented forest
types or areas that are highly vulnerable to climate change.

The forest types and vulnerability maps should guide the devel-
opment of new land-use plans that preserve the full range of evo-
lutionary and functional potential of today’s forests—or, at least,
that maintain their connectivity—to attenuate the threats related



to expected changes. In central Africa, protected areas and logging
concessions, which together cover almost half of the forest domain
(14.9% and 32.2%, respectively; Extended Data Fig. 9), are impor-
tant to consider in such plans. Protected areas do not equally cover
the 10 identified types of forest (4-54%; Extended Data Table 1) and
should therefore be extended to reach abetter representativity. How
estimated vulnerability should be accounted for when designing
protected areas, for example, by extending the network in vulner-
able areas to minimize the loss of biodiversity, or in areas with low
anthropogenic pressure to improve their protection, is subject to
debate*®. Logging concessions can also contribute to the mainte-
nance of forest cover and functions, providing that they are well
managed***°, and are likely to act as biodiversity corridors between
protected areas at present®. However, this will only prove effective
in the long term if they strictly comply with legislation and, ideally,
with standard certification requirements. These good practices are
especiallyimportantinforests that are dominated by evergreen taxa
with a high wood density, in which disturbances may have a higher
impacton community composition. Inareas that are expected to be
under high anthropogenic pressure, forest connectivity could be
preserved by promoting agroforestry and restoration programmes,
strictly controlling access to logging roads and stabilizing shifting
agriculture®. Across central Africa, the highest uncertainties for the
future of forests remain in the Democratic Republic of the Congo,
where substantial areas that belong to the state are not yet attributed
to any land-use category and should warrant particular attention
owing to their high vulnerability (Fig. 4).

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41586-021-03483-6.

1. Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate
model ensemble. Clim. Change 114, 813-822 (2012).

2. United Nations, Department of Economic and Social Affairs, Population Division. World
Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper
No. ESA/P/WP/248 (2017).

3. Malhi, Y., Adu-Bredu, S., Asare, R. A., Lewis, S. L. & Mayaux, P. African rainforests: past,
present and future. Phil. Trans. R. Soc. B 368, 20120312 (2013).

4.  James, R., Washington, R. & Rowell, D. P. Implications of global warming for the climate of
African rainforests. Phil. Trans. R. Soc. B 368, 20120298 (2013).

5. Abernethy, K., Maisels, F. & White, L. J. Environmental issues in Central Africa. Annu. Rev.
Environ. Resour. 41,1-33 (2016).

6. Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical
forests. Nature 579, 80-87 (2020).

7. De Wasseige, C., Tadoum, M., Atyi, E. & Doumenge, C. The Forests of the Congo Basin:
Forests and Climate Change (Weyrich, 2015).

8.  Stévart, T. et al. A third of the tropical African flora is potentially threatened with
extinction. Sci. Adv. 5, eaax9444 (2019).

9. Parmentier, I et al. The odd man out? Might climate explain the lower tree a-diversity
of African rain forests relative to Amazonian rain forests? J. Ecol. 95,1058-1071
(2007).

10. Réjou-Méchain, M. et al. Regional variation in tropical forest tree species composition in
the Central African Republic: an assessment based on inventories by forest companies.
J. Trop. Ecol. 24, 663-674 (2008).

1. Réjou-Méchain, M. et al. Tropical tree assembly depends on the interactions between
successional and soil filtering processes. Glob. Ecol. Biogeogr. 23, 1440-1449
(2014).

12.  Fayolle, A. et al. Geological substrates shape tree species and trait distributions in African
moist forests. PLoS One 7, e42381(2012).

13. Fayolle, A. et al. Patterns of tree species composition across tropical African forests.
J. Biogeogr. 41, 2320-2331(2014).

14. Droissart, V. et al. Beyond trees: biogeographical regionalization of tropical Africa.
J. Biogeogr. 45, 1153-1167 (2018).

15.  Sosef, M. S. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15
(2017).

16. Parmentier, I. et al. Predicting alpha diversity of African rain forests: models based on
climate and satellite-derived data do not perform better than a purely spatial model.
J. Biogeogr. 38, 1164-1176 (2011).

17.  Bry, X., Trottier, C., Verron, T. & Mortier, F. Supervised component generalized linear
regression using a PLS-extension of the fisher scoring algorithm. J. Multivariate Anal. 119,
47-60 (2013).

18. ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function
across Amazonia. Nature 443, 444-447 (2006).

19.  Slik, J. W. et al. Soils on exposed Sunda shelf shaped biogeographic patterns in the
equatorial forests of Southeast Asia. Proc. Natl Acad. Sci. USA 108, 12343-12347 (2011).

20. Philippon, N. et al. The light-deficient climates of western Central African evergreen
forests. Environ. Res. Lett. 14, 034007 (2019).

21.  Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science
368, 869-874 (2020).

22. Beale, C. M., Lennon, J. J. & Gimona, A. Opening the climate envelope reveals no
macroscale associations with climate in European birds. Proc. Natl Acad. Sci. USA 105,
14908-14912 (2008).

23. Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species
distribution modelling in the tropics. Glob. Ecol. Biogeogr. 25, 443-454 (2016).

24. Maguire, K. C. et al. Controlled comparison of species- and community-level models
across novel climates and communities. Proc. R. Soc. B 283, 20152817 (2016).

25.  Morin-Rivat, J. et al. Present-day central African forest is a legacy of the 19th century
human history. eLife 6, 20343 (2017).

26. Ricklefs, R. E. Intrinsic dynamics of the regional community. Ecol. Lett. 18, 497-503 (2015).

27. Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882-892 (2007).

28. Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167-171 (2016).

29. Ruger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368,
165-168 (2020).

30. Ouédraogo, D.-Y. et al. The determinants of tropical forest deciduousness: disentangling
the effects of rainfall and geology in central Africa. J. Ecol. 104, 924-935 (2016).

31.  Shipley, B. From Plant Traits to Vegetation Structure: Chance and Selection in the
Assembly of Ecological Communities (Cambridge University Press, 2010).

32. Feeley, K. J. &Silman, M. R. Biotic attrition from tropical forests correcting for truncated
temperature niches. Glob. Change Biol. 16, 1830-1836 (2010).

33. Parry, M. et al. Climate Change 2007 - Impacts, Adaptation, and Vulnerability:
Contribution of Working Group Il to the Fourth Assessment Report of the IPCC (Cambridge
University Press, 2007).

34. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a
systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8,
65427 (2013).

35. Lachenaud, O., Stévart, T., Ikabanga, D., Ndjabounda, E. C. N. & Walters, G. The littoral
forests of the Libreville area (Gabon) and their importance for conservation: description
of a new endemic species (Rubiaceae). Plant Ecol. Evol. 146, 68-74 (2013).

36. Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in
response to a long-term drought. Ecol. Lett. 22, 855-865 (2019).

37. Claeys, F. et al. Climate change would lead to a sharp acceleration of Central African
forests dynamics by the end of the century. Environ. Res. Lett. 14, 044002 (2019).

38. McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science
368, €aaz9463 (2020).

39. Zhoy, L. et al. Widespread decline of Congo rainforest greenness in the past decade.
Nature 509, 86-90 (2014).

40. Purvis, A. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst.
39, 301-319 (2008).

41, Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating
environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463-1468 (1999).

42. Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at
intermediate precipitation. Sci. Rep. 10, 1188 (2020).

43. Letcher, S. G. Phylogenetic structure of angiosperm communities during tropical forest
succession. Proc. R. Soc. B 277, 97-104 (2010).

44. Letouzey, R. Notice de la carte phytogéographigue du Cameroun au 1:500000 (Institut
de la Carte Internationale de la végétation Toulouse-France et Institut de la recherche
agronomique (Herbier National) Yaoundé-Cameroun, 1985).

45. Boulvert, Y. Carte phytogéographique de la République Centrafricaine (feuille oust-
feuille est) 21000 000 (Editions de 'ORSTOM, 1986).

46. Fyllas, N. M., Quesada, C. A. & Lloyd, J. Deriving plant functional types for Amazonian forests
for use in vegetation dynamics models. Perspect. Plant Ecol. Evol. Syst. 14, 97-110 (2012).

47. Mitchard, E. T. A. et al. Markedly divergent estimates of Amazon forest carbon density
from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935-946 (2014).

48. Visconti, P., Pressey, R. L., Bode, M. & Segan, D. B. Habitat vulnerability in conservation
planning—when it matters and how much. Conserv. Lett. 3, 404-414 (2010).

49. Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the
attained and the attainable. Conserv. Lett. 5, 296-303 (2012).

50. Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural
experiment from Central Africa. Phil. Trans. R. Soc. B 368, 20120302 (2013).

51.  Clark, C.J., Poulsen, J. R., Malonga, R. & Elkan, P. W. Jr. Logging concessions can extend the
conservation estate for Central African tropical forests. Conserv. Biol. 23, 1281-1293 (2009).

52. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of
global forest loss. Science 361, 1108-1111 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Nature | www.nature.com | 5


https://doi.org/10.1038/s41586-021-03483-6

Article

Methods

Datareporting

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Floristic and functional trait data

Forestry data were extracted from management forest inventories
conducted in 105 logging concessions covering around 1.6 x 10° km?
(Extended DataFig.1). Most companies followed a standardized inven-
tory protocol similar to that described previously*. In most cases,
it consisted of continuous and parallel transects 20 m or 25 m wide,
often 2-3 km apart, and subdivided into rectangular 0.4- or 0.5-ha
plots. Overall, the full dataset had a total 0f 192,972 plots. Within each
plot, trees with a diameter at breast height (DBH) >30 cm were allo-
cated into 10-cm wide diameter classes and identified at the species
or genus level whenever possible through either commercial or local
names®. Independent analyses performed on 298 scientific plots (=1 ha
in size) showed that the floristic gradients obtained with large trees
arerepresentative of the ones obtained with trees >10 cmin diameter
(Pearsonr> 0.94; Supplementary Fig. 4). Overall, around 7 x 10° trees
were recorded. Taxonomy was revised and homogenized using the
African Flowering Plants Database® and the Angiosperm Phylogeny
Group lll for orders and families®. A total of 1,092 taxa were recorded
inthe original dataset. Extensive botanical controls demonstrated that
the patterns of both intra (a)- and inter ()- plot diversity extracted
from these data were highly reliable®.

For the purpose of the present paper, we conducted an additional
assessment according to botanical experts and by comparing the dis-
tributional range of our taxawith thatin other datasets>*** to select aset
of species and genera deemed to be reliably identified over the whole
study area (n=195). The abundances of these taxa were aggregated in
10 x 10-km? grid cells across the study area, but we only kept the taxa
occurringin at least 5% of the cells to discard taxa that cannot be stud-
ied at the regional scale (n=2). For the statistical analyses, we kept the
10 x10-km?grid cells having a field plot sampling area >10 haand where
the selected taxa represented at least 75% of the total number of indi-
viduals originally inventoried to ensure that our dataset was representa-
tive of the within-cell tree community composition. The final dataset
contains 6.1 x10° tree individuals belonging to 193 taxa, of which 96
were analysed at the speciesand 97 at the genus levels (Supplementary
Table 2), recorded in 185,665 plots aggregated in1,57110 x 10-km?grid
cells. Overall, the selected taxa represented 90% of the total number of
individuals originally inventoried in the selected grid cells.

For eachtaxon, we compiled information on three functional traits.
First, we extracted an average wood density using the global wood
density database®® as well as other wood density data*’. Wood den-
sityisanintegrative trait that reflects a trade-off between tree growth
potential and mortality risk?® and is thus highly informative on com-
munity dynamics®. It ultimately directly affects the amount of carbon
that can be stored in the vegetation®. Second, we extracted the leaf
phenology (deciduous or evergreen) of all taxa from the large unpub-
lished CoForTraits database®. This database compiles information on
morethan1,000 species from central Africawith values extracted from
the literature (mostly from local floras, academic papers and unpub-
lished theses). When several values were available for a given species
from different sources, we attributed the one with the maximum of
occurrences (ambiguities were left as unknown). At the genus level,
we first computed this step for all species belonging to the genus and
then attributed the phenology with the maximum of occurrences at
the species level to the genus so that all congeneric species have the
same weightin the phenology attribution. This approachrelies on the
assumption that leaf phenological traits are highly phylogenetically
conserved®. For a few taxa (n =5), the phenology information was

obtained from Ouédraogo et al.** and following these authors we con-
sidered Lophira alataBanks ex C.F. Gaertn. and Musanga cecropioides
R.Br. as leaf exchangers; that is, with a trait value of 0.5, intermediate
betweenevergreen (0) and deciduous (1). Leaf phenology is one of the
few traits considered in dynamic global vegetation models as it affects
the dynamics of forest productivity®. In particular, deciduousness
indicatesthat tree photosyntheticactivity, and thus growth, is season-
ally depressed, which has a direct effect on carbon, water and nutrient
cycling®. Deciduousness has often been interpreted as a strategy to
avoid water stress and is thus expected to depend on climate and soil
conditions®*®, Finally, we used the originalinventory data to calculate
the maximum diameter as the 95th percentile value of the diameter dis-
tribution for each taxon. Maximum potential diameter, whichis often
used as a proxy of maximum height®, informs both on tree competitive
ability for lightand on the carbon sequestration potential. At the com-
munity level, itis expected to vary along gradients of productivity and
disturbance®®. Leaf phenology was successfully assigned to 89% of the
taxa (98% of the individuals), wood density to 91% of the taxa (96% of
the individuals) and maximum diameter to all taxa.

Climate and soil data
We considered 24 climatic predictors derived from the open Climatic
Research Unit (CRU) dataset® (Extended Data Table 2). We decided to
rely on the CRU dataset as other datasets, such as WorldClim’, con-
tain erroneous observations for some climatic stations (for example,
Ngoundiin Cameroon) that severely affected our model. Furthermore,
our cross-validation approach showed that the CRU database led to
higher correlations between observed and predicted taxa abundances,
correspondence analyses scores and community weighted trait values
than the WorldClim” and CHIRPS™ databases (results not shown).
Soil maps have been published at the country scale in central Africa
andtheir homogenizationis very challenging. We thus relied on aglobal
dataset, the Harmonized World Soil Database (HWSD), to attribute
asoiltypetoeachgrid cell. A cross-validation analysis of our joint dis-
tribution model revealed that soil significantly improved predictions,
mostly due to the contrast between Arenic Acrisols and the other soil
types (Supplementary Fig. 5). To keep the model parsimonious and
maximize its robustness, we thus merged all soil categories but the
Arenic Acrisols soils into a single category and discarded the perma-
nently flooded areas as mapped in the open European Space Agency
Climate Change Initiative (ESA-CCI) landcover product (v.1.6), where
no tree inventory data were available.

Human-induced forest-disturbance intensity
Many studies have attempted to spatialize humanimpacts on the envi-
ronment at a large scale. In most cases, these human footprint maps
have consisted of cumulative threat maps, assuming, for instance,
population density and infrastructure effects”>”. Moreover, most
of these maps relied on population statistics obtained at the level of
administrative entities, resulting in human footprintindices with sharp
changes at administrative boundaries™. We thus developed a statistical
modeltolink the probability for aforest pixel ito be affected by anthro-
pogenic activities depending on human population density and road
proximity through nonlinear relationships. This resulted in a spatially
continuous index representing human-induced forest-disturbance
intensity that can be projected in space and/or time following prede-
fined scenarios of human population dynamics (Extended Data Fig. 8).
We calibrated this index with the ‘Settlement Points’ dataset pro-
duced under the Global Rural Urban Mapping Project (Grumpvl). This
dataset provides estimates of human population (counts, in number
of people (individuals)) for the year 2000 using a proportional alloca-
tion gridding algorithm (1-km? grid) based on more than 1,000,000
national and subnational geographic units. Focusing on central Africa,
we compared this product with the Natural Earth Populated Places
product (v.3.0.0; http://www.naturalearthdata.com/downloads/


http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/

10m-cultural-vectors/10m-populated-places/; last accessed 7 October
2018) derived from the LandScan (https://earthworks.stanford.edu/
catalog/stanford-yj715rc4110#iso-metadata-reference-info) dataset
(pixels with fewer than 200 individuals per km? were discarded). The
total number of populated pointsin central Africa (longitude 5.6 t0 39.8,
latitude —9.8 to 7.5in decimal degrees) was 807 and 376 for the Grumpvl
and Natural Earth products, respectively. We thus performed arandom
manual check of the populated places presentin Grumpvl and absent
from Natural Earth (the reverse rarely occurred) using Google Earth
images and found thatin all cases Grumpvlwas correct. We finally used
the Grumpvl dataset, which mostly provides information on populated
places with more thanaround 1,000 people. Because smaller popula-
tions may have asubstantialimpact on forests, we added to this dataset
the populated locations of the category ‘towns’ from OpenStreetMap
(https://data.maptiler.com/downloads/planet/#1.59/-17.3/19.7; last
accessed 2 October 2018), assuming by default that they all contained
500 people (OpenStreetMap does not provide systematic information
on populationsize).

The road network was extracted from the Global Roads Open
Access Data Set, v.1 (https://sedac.ciesin.columbia.edu/data/set/
groads-global-roads-open-access-vl; last accessed 14 September 2018),
adataset combining road databy country. Note that logging roads are
not fully represented in this dataset, so we may underestimate their
effectin this study. A few roads from the northern Republic of the Congo
were corrected using datafrom OpenStreetMap. Preliminary analyses
revealed that further accounting for the railway and river networks did
notimprove predictions of tree taxon and community distributions.

Our index was thus calculated as followed. Let z, i=1,..., nbe nran-
domvariablesindicating the disturbance status of pixel i: O if the pixel
is undisturbed and 1if disturbed. We assumed that z;is distributed as
aBernoullivariable:

IP,(6
z;=Bern(p), withp, = m
whereIP,(0) isasyntheticindex describing the influence of the popula-
tion density of all populated places on pixel i (see below), 8 is an
unknown parameter to be inferred, and IR] expresses the road influence
on pixel i, defined as the normalized square root distance of pixel i to
the nearestroadr:

min,/DR/
IR/ = LR

where DR denotes the distance to the nearest road in the study area
and Rdenotes all roads in the study area.

Populationinfluence, IP?, is defined as the normalized square root
of the weighted sum of the population size of place. Note that the
weight depends on both the distance between pixel i and populated

placej, 6;, and on the population size N;:
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We finally calibrated the 6 parameter using two reference areas of
around 190,000 km? (Supplementary Fig. 6). These two areas were cho-
senbecause they cover contrasting conditions, are well known by our
team and were found to be little influenced by atmospheric pollution
inthe MODIS data. Degraded versus intact forests were identified from
arecently published MODIS-based regional vegetation map®. Using
alikelihood optimization approach in these two areas, we obtained

1P/ =

6=1.27and1.71in calibration areas1and 2, respectively, indicating that
under asimilar anthropogenic context, forests tend to be disturbed at
agreater distance from sources of anthropogenic disturbance in the
second calibration area. The final human-induced forest-disturbance
intensity index was thus calculated with 8=1.49, the average estimate
for the two calibration areas, over the whole central African forest
domain, thus avoiding the risk of artefacts related to atmospheric
pollution, fromwhich satellite products suffer, especially over Gabon.

This index, builtindependently from our floristic dataset, outper-
formed previously published indices to predict floristic composition
inour study area. Using a simple linear model, with individual anthro-
pogenic indices as single predictors, the mean wood density of tree
communities was better predicted with our new index (r=0.33) than
with the WorldPop”” (r=0.30), LandScan (r=0.15) and Venter™ (r=0.23)
indices. Similarly, using a simple generalized linear model with a Pois-
sondistributionto predict the abundance of Musanga cecropioides—the
most widespread and abundant short-lived pioneer taxon over central
African forests—revealed a better performance of our index (r=0.35)
compared to previous indices (r=0.31, 0.11 and 0.26 for WorldPop,
LandScan and Venter, respectively).

Statistical model

To predict the joint taxa distributions we relied on arecently devel-
oped methodology called supervised component generalized linear
regression (SCGLR)”, whichidentifies the most predictive dimensions
among a large set of potentially multicollinear predictors. SCGLR is
anextension of partial least-squares regression (PLSR) to the uni- and
multivariate generalized linear framework. PLSR is particularly well
suited for analysing alarge array of correlated predictor variables, and
many studies have demonstrated its ability for prediction in various
biological fields, suchas genetics’®and ecology”. Although PLSR is well
adapted for continuous variables, SCGLR is suited for non-Gaussian
outcomes and noncontinuous covariates. It isamodel-based approach
that extends PLSR®, principal component analysis (PCA) oninstrumen-
tal variables®, canonical correspondence analysis®? and other related
empirical methods by maximizing atrade-offbetween goodness of fit of
the model and the quantity ofinformation that the components capture
fromthe climatic variables. This information is measured through an
indicator of ‘structural relevance’ (SR)®*?, which uses bundles of highly
correlated variables to attract components to rich and robust infor-
mational dimensions.

The components are sought as K linear combinations of environmen-
tal variables common to all species with coefficient vectors denoted
u=1u,...,ux (under norm and orthogonality constraints). SCGLR also
estimates the corresponding g x K (number of species by number of
components) matrix of unknown parameters y to maximize the fol-
lowing convex sum:

s logy(u, y) + (1-s)log g, (u)

where ¢isthelikelihood and ¢,is the SR.sand [are tuning parameters. sis
relatedto the trade-offbetween goodness of fitand structural relevance.
lis a non-negative scalar related to the narrowness of the bundles of
climatic variables the components are wanted to align with. The K cli-
matic components (CCs) are then equal to CC,=Xu,, k=1,...,Kand canbe
understood as the main environmental directions predicting all species
simultaneously, whereasy;, j=1..., gare the magnitude of the effects of
the K components on the abundances of each species. Then, the spe-
cies abundances of each taxonj=1,...,193 on the grid celli=1,...,1,571
are modelled using a generalized linear Poisson regression such that:

Vi~ P(Si/lij)

log(1;) = X8, + Tiay=Xuy, + Tiey = CCyy, + Ty
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where X denotes climatic variables (Extended Data Table 2), S;is an
offset corresponding to the number of plots within each grid cell, and
Tis a set of covariates known to affect species abundances: here, the
soil type and the human-induced forest-disturbance intensity index,
aswell asits logarithm to account for nonlinear responses.

The number of components (K) as well as the tuning parameters
({ and s) must appropriately be chosen. This was done with a 10%
cross-validation procedure in which the criterion used was the har-
monic mean of the mean square prediction error (MSPE) across the
194 taxa. A dedicated R package, SCGLR®, is available (see also https://
github.com/SCnext/SCGLR).

To assess the predictive power of our model, we performed a
leave-one-block-out cross-validation in which our dataset was divided
into 40 spatial clusters identified witha Ward’s hierarchical clustering®
of plot coordinates® (Supplementary Fig. 7). All clusters but one were
used for training the model (thatis, calibration dataset) and the remain-
ing cluster was used for validating the model. We repeated this proce-
dure 40 times such that all clusters were used once in the validation
dataset and participated in the model assessment. Model validation was
performed through the use of nonparametric Spearman’s rank correla-
tion coefficients between observations and predictions. For individual
taxon abundances, correlations were estimated using observed and
predicted abundance per taxon. For taxon assemblages, a correspond-
ence analysis (CA) was performed on the grid cell x observed species
abundance matrix, providing the observed CA axes. The predicted
site scores on each CA axis were then obtained by projecting the grid
cell x predicted species abundance matrix in the observed CA planes.
Correlations were computed on the observed and predicted site scores
(thatis, loadings) enabling us to assess the ability of our model to pre-
dict the main floristic gradients across our area. Finally, for the three
functional traits, correlations were estimated on the grid-cell-based
community weighted mean (CWM) traits? calculated on observed and
predicted taxon assemblages.

Taxon abundances and community composition were predicted
across the entire study areain a regular 10-km grid. To predict the flo-
ristic composition of the existing forests, we first used the ESA-CCI
landcover product (v.1.6) to only keep grid cells that are likely to be
forested (that s, category ‘broadleaved evergreen’). Then, we only
selected grid cells that had acombination of predictor values similar to
those in the calibration dataset. To do this, we used a three-dimensional
(3D) convex hull algorithm on the three climatic components to exclude
all the grid cells that had a combination of predictors different from
thatrepresentedin the calibration dataset. Thisresulted in 12,295 grid
cells, representing 85% of the central African forests; thatis, an area of
around 1,230,000 km”.

We finally used the Ward'’s hierarchical clustering method to classify
the predicted floristic composition into broad floristic types. Group
classification was done on thefirst five axes of a CA performed on pre-
dicted taxon abundances, accounting for 77% of the total inertia. The
number of retained types was chosen based on our expert knowledge.
The uncertainty associated with this classification was then assessed
through Gaussian finite mixture models® (repeated 500 times) using
aspherical, equal volume model (EII).

Spatially explicit null models

Whenever predictors and observations are spatially structured, model
errors of type I (false positive associations) are inflated®®, hindering
our capacity to extrapolate predictions in space or time?. We thus
built a spatialized null model to test the degree to which the success-
fulness of our predictions resulted from an actual relationship with
climatic variables or was simply due to spatial costructures between
taxon distributions and climatic gradients that arose by chance. We
used the RGeostats R package® to simulate sets of SCGLR CCs hav-
ing similar spatial properties to those of the observed CCs as well
as similar spatial costructures between them. This step consisted of

fitting theoretical variograms and covariograms to empirical ones to
simulate randomrealizations that can be then used as ‘null’ spatialized
predictors (Supplementary Figs. 8, 9). We simulated 500 sets of ‘null’
spatialized predictors and used them as predictors in our GLMs using
the leave-one-block-out cross-validation described above. The result-
ing correlations between observed and predicted taxon abundances,
and axes scores (for taxon assemblages) were finally compared with
the correlations obtained when observed climatic predictors were
considered. The resulting P values were calculated as the number of
times asimulated correlation was higher than the observed one, divided
by the total number of realizations (n=501).

Forest vulnerability to global change

Vulnerability to climate change, as assessed through the IPCC frame-
work, is composed of three components: (1) sensitivity, (2) exposure
and (3) adaptive capacity to climate change.

Sensitivity to climate change, Sensitivity,,,,, was first estimated at
thetaxonlevelinasimilar way to that described previously**. For each
taxon, we calculated the mean of the weighted standard deviation
(SDw) of the three climatic components (CCs) at the present time, using
locally observed taxon abundances as weights. SDw thus represents
the width of the climatic niche currently occupied by the taxa.
Taxon-specific climate sensitivity was then measured as 1/SDw (it
increases as niche width decreases). To upscale tree sensitivity to cli-
mate change at the community level and over our study area, sensitiv-
ity was measured as the CWM of taxon-specific climate-sensitivity
scores, using predicted taxon assemblages.

Exposure to climate change, Exposure,;,, was assessed using pro-
jected changesin climate from 18 unique climate model combinations
provided by the AFRICLIM v3.0 dataset® (last accessed 3 February
2020). These models corresponded to pairwise combinations of five
regional climate models (RCMs) driven by 10 general circulation mod-
els (GCMs), with an unequal number of GCMs models per RCM (10
models for the Swedish Meteorological and Hydrological (SMHI) RCM,
four for the Climate Limited-area Modelling Community (CLMCOM)
RCM, two for the Royal Netherlands Meteorological Institute (KNMI)
RCM, one for the Canadian Centre for Climate Modelling (CCCMA)
RCM and one for the Danish Meteorological Institute (DMI) RCM).
These models were generated using change-factor downscaling
approaches to model spatial variation at local scales while correcting
for differences between observed and simulated baseline climates (see
ref. °° for more details). We here concentrated on one representative
concentration pathway of the IPCC AR5 (RCP 4.5) for the late 21st cen-
tury (2071-2100; hereafter named 2085) and reconstructed the three
SCGLRselected CCsfrom the climatic predictions as follows: let X,cp 5
be the predicted future climatic conditionsand let m = X and S=sd(X)
be the mean and standard deviation matrices of the current climatic
conditions. The predictive climatic components under future sce-
narios are then equal to Fepas = Kicpas—m)Sit, where i represents
SCGLR CCs. We then calculated the Euclidean distance between the 3
current and the 3 predicted CCs for each of the 18 models and then
estimated the exposure to climate change as the mean distance over
the 18 models.

Adaptive capacity to climate change, Adaptive;,, was assessed
through the phylogenetic diversity of predicted assemblages at the
genus level. We used arecently published dated phylogeny®, covering
167 out of our 180 genera (representing 94% of predicted individuals).
Wefirst testedif the studied taxa exhibited a significant conservatism
in their climate niches using Abouheif’s permutation tests®? on the
taxa-specificscore (y) values on the three SCGLR climate components
(yrepresents the influence of a CC on a given taxa distribution; see
above). We then measured the phylogenetic diversity (PD) of predicted
assemblages at the generalevel using the Chao’s PD index withan order
g of 1 (equivalent to the Shannon index)®® that we used as a proxy of
adaptive capacity.
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Vulnerability to climate change, Vulnerability,;,, was finally esti-
mated as the sum of the three standardized (st) (0 to 1) components:

st

oimt Exposure’], - Adaptive?| )

Vulnerability,, = (Sensitivity i lim

Vulnerability;, theoretically ranges from -1 (low vulnerability) to
2 (high vulnerability) and, owing to the standardization of its three
components, it expresses a relative vulnerability over the study area
and is thus little affected by the IPCC scenario chosen (RCP 4.5 or 8.5)
because different scenarios predict different amplitudes of changes
but similar spatial patterns (Extended Data Fig. 7).

Forecasted human impact on forests in 2085 was assessed using
our human-induced forest-disturbance intensity index combined
with country-specific projections of human populations in 2085. We
assigned to each current town a country-specific relative population
increase drawn from the United Nations World Population Prospects?
and rebuilt our index based on this modified dataset. This approach
did not account for new roads that might be established by 2085, and
thustended to underestimate the increase inanthropogenic pressure.

Software and packages

Allanalyses were performed and figures were created with R**, mostly
using the ade4®, alphashape3d®, ggplot2”, raster®®, RGeostats®, entro-
part®® and SCGLR®* (https://github.com/SCnext/SCGLR/) packages.
Data are archived in a public repository (https://doi.org/10.18167/
DVNI1/UCNCA7?).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Allmaps and data used for this article are accessible online in a public
repository at https://doi.org/10.18167/DVN1/UCNCA?7. Raw floristic
data are, however, archived in a private data repository, owing to the
highly sensitive nature of commercial inventory data, and access may
be granted for research purposes using the form provided in the public
repository.

Code availability
Rscriptsareavailable at https://github.com/MaximeRM/ScriptNature.

53. Réjou-Méchain, M. et al. Detecting large-scale diversity patterns in tropical trees: can we
trust commercial forest inventories? For. Ecol. Manage. 261, 187-194 (2011).

54. African Plant Database v.3.4.0 (Conservatoire et Jardin Botaniques de la Ville de Genéve
and South African National Biodiversity Institute, Pretoria, accessed 10 February 2017).

55. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group
classification for the orders and families of flowering plants: APG IlI. Bot. J. Linn. Soc. 161,
105-121(2009).

56. Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants
distributions. PhytoKeys 74, 1-18 (2016).

57. Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351-366
(2009).

58. Zanne, A. E. et al. Data from: towards a worldwide wood economic spectrum.
Dryad https://doi.org/10.5061/dryad.234 (2009).

59. Gourlet-Fleury, S. et al. Environmental filtering of dense-wooded species controls above-
ground biomass stored in African moist forests. J. Ecol. 99, 981-990 (2011).

60. Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends
Ecol. Evol. 21, 261-268 (2006).

61. Chave, J. et al. Improved allometric models to estimate the aboveground biomass of
tropical trees. Glob. Change Biol. 20, 3177-3190 (2014).

62. Bénédet, F. et al. CoForTraits, African plant traits information database v.1.0, https://doi.
0rg/10.18167/DVN1/Y2BIZK (2013).

63. Davies, T. J. et al. Phylogenetic conservatism in plant phenology. J. Ecol. 101, 1520-1530
(2013).

64. Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO,
and climate change: Results from six dynamic global vegetation models. Glob. Change
Biol. 7, 357-373 (2001).

65. Menzel, A. Phenology: its importance to the global change community. Clim. Change 54,
379 (2002).

66. Borchert, R., Rivera, G. & Hagnauer, W. Modification of vegetative phenology in a tropical
semi-deciduous forest by abnormal drought and rain. Biotropica 34, 27-39 (2002).

67. Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree
community assembly in an Amazonian forest. Science 322, 580-582 (2008).

68. Schamp, B. S. & Aarssen, L. W. The assembly of forest communities according to
maximum species height along resource and disturbance gradients. Oikos 118, 564-572
(2009).

69. New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over
global land areas. Clim. Res. 21, 1-25 (2002).

70. Hijmans, R. J., Cameron, S.E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution
interpolated climate surface for global land areas. Int. J. Climatol. 25, 1965-1978 (2005).

71.  Funk, C. etal. The climate hazards infrared precipitation with stations—a new
environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

72. Nachtergaele, F. et al. The harmonized world soil database. In Proc. 19th World Congress
of Soil Science, Soil Solutions for a Changing World (eds Gilkes, R. & Prakongkep, N.)
34-37 (International Union of Soil Sciences, 2010).

73. Woolmer, G. et al. Rescaling the human footprint: a tool for conservation planning at an
ecoregional scale. Landsc. Urban Plan. 87, 42-53 (2008).

74. Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and
implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

75. Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally
on land and within protected areas. Conserv. Biol. 28, 1604-1616 (2014).

76. Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. & Tatem, A. J. Population distribution,
settlement patterns and accessibility across Africa in 2010. PLoS One 7, €31743 (2012).

77. Lloyd, C.T. et al. Global spatio-temporally harmonised datasets for producing
high-resolution gridded population distribution datasets. Big Earth Data 3, 108-139
(2019).

78. Boulesteix, A.-L. & Strimmer, K. Partial least squares: a versatile tool for the analysis of
high-dimensional genomic data. Brief. Bioinform. 8, 32-44 (2007).

79. Carrascal, L. M., Galvan, |. & Gordo, O. Partial least squares regression as an alternative to
current regression methods used in ecology. Oikos 118, 681-690 (2009).

80. Tenenhaus, M. La Régression PLS: Théorie et Pratique (Editions Technip, 1998).

81. Sabatier, R., Lebreton, J. D. & Chessel, D. in Multiway Data Analysis (eds Coppi, R. &
Bolasco, S.) 341-352 (1989).

82. Ter Braak, C. J. F.in Theory and Models In Vegetation Science (eds Prentice, I. C. & van der
Maarel, E.) 69-77 (Springer, 1987).

83. Bry, X. & Verron, T. THEME: THEmatic model exploration through multiple co-structure
maximization. J. Chemometr. 29, 637-647 (2015).

84. Cornu, G., Mortier, F., Trottier, C. & Bry, X. SCGLR: supervised component generalized
linear regression. R version 3.0 https://cran.r-project.org/web/packages/SCGLR/index.
html (2016).

85. Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc.
58, 236-244 (1963).

86. Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale
ecological mapping models. Nat. Commun. 11, 4540 (2020).

87. Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and
density estimation using gGussian finite mixture models. R J. 8, 289-317 (2016).

88. Dormann, C.F. et al. Methods to account for spatial autocorrelation in the analysis of
species distributional data: A review. Ecography 30, 609-628 (2007).

89. Renard, D. et al. RGeostats: the geostatistical package v.11.0. 1 http://rgeostats.free.fr/
(MINES ParisTech, 2014).

90. Platts, P. J.,, Omeny, P. A. & Marchant, R. AFRICLIM: high-resolution climate projections for
ecological applications in Africa. Afr. J. Ecol. 53, 103-108 (2015).

91. Janssens, S. B. et al. A large-scale species level dated angiosperm phylogeny for
evolutionary and ecological analyses. Biodivers. Data J. 8, e39677 (2020).

92. Aboubheif, E. A method for testing the assumption of phylogenetic independence in
comparative data. Evol. Ecol. Res. 1, 895-909 (1999).

93. Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers.
Phil. Trans. R. Soc. B 365, 3599-3609 (2010).

94. R Core Team. R: a language and environment for statistical computing. (R Foundation for
Statistical Computing, 2017).

95. Chessel, D., Dufour, A. B. & Thioulouse, J. The ade4 package - |: one-table methods. R
News 4, 5-10 (2004).

96. Lafarge, T. & Pateiro-Lopez, B. alphashape3d: implementation of the 3D alpha-shape for
the reconstruction of 3D sets from a point cloud. R version 1.3.1 https://cran.r-project.org/
web/packages/alphashape3d/index.html (2017).

97.  Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

98. Hijmans, R. J. raster: geographic data analysis and modelling. R version 3.4-5 https://
cran.r-project.org/web/packages/raster/index.html (2017).

99. Marcon, E. & Hérault, B. entropart: An R package to measure and partition diversity.

J. Stat. Softw. 67, 1-26 (2015).

100. Dufréne, M. & Legendre, P. Species assemblages and indicator species: the need for a

flexible asymmetrical approach. Ecol. Monogr. 67, 345-366 (1997).

Acknowledgements We thank the 105 forest companies that provided access, albeit restricted, to
their inventory data for research purposes and members of the central African plot network (https://
central-african-plot-network.netlify.app/), Y. Yalibanda, F. Allah-Barem, F. Baya, F. Boyemba, M. Mbasi
Mbula, P. Berenger, M. Mazengue, V. Istace, |. Zombo, E. Forni, Nature+ and the CEB-Precious Woods
company for giving access to the scientific inventories described in Supplementary Fig. 4, some of
which were funded by the AFD and the FFEM (for example, DynAfFor and P3FAC projects). We thank
J. Chave, P. Couteron, S. Lewis and M. Tadesse for their comments and discussions on previous
versions, B. Sultan for useful discussions on climate projections, O. J. Hardy for advice on
phylogenetical analyses, B. Locatelli for advice on vulnerability analyses, G. Vieilledent for
discussions on the human-induced forest-disturbance intensity index and A. Stokes for English
editing. This work was supported by the CoForTips project (ANR-12-EBID-0002) funded by the
ERA-NET BiodivERsA, with the national funders ANR, BELSPO and FWF, as part of the 2012


https://github.com/SCnext/SCGLR/
https://doi.org/10.18167/DVN1/UCNCA7
https://doi.org/10.18167/DVN1/UCNCA7
https://doi.org/10.18167/DVN1/UCNCA7
https://github.com/MaximeRM/ScriptNature
https://doi.org/10.5061/dryad.234
https://doi.org/10.18167/DVN1/Y2BIZK
https://doi.org/10.18167/DVN1/Y2BIZK
https://cran.r-project.org/web/packages/SCGLR/index.html
https://cran.r-project.org/web/packages/SCGLR/index.html
http://rgeostats.free.fr/
https://cran.r-project.org/web/packages/alphashape3d/index.html
https://cran.r-project.org/web/packages/alphashape3d/index.html
https://cran.r-project.org/web/packages/raster/index.html
https://cran.r-project.org/web/packages/raster/index.html
https://central-african-plot-network.netlify.app/
https://central-african-plot-network.netlify.app/

Article

BiodivERsA call for research proposals, the GAMBAS project funded by the French National
Research Agency (ANR-18-CE02-0025) and the project 3DForMod funded by the UE FACCE
ERA-GAS consortium (ANR-17-EGAS-0002-01). This study is a contribution to the research program
of LMI DYCOFAC (Dynamique des écosystémes continentaux d’Afrique Centrale en contexte de
changements globaux).

Author contributions Conceptualization: M.R.-M., F.M., R.P. and S.G.-F.; data curation: G.C. and
F.B.; formal analysis: M.R.-M. and F.M.; project administration: C.G.; writing (original draft):
M.R.-M., F.M., R.P. and S.G.-F.; writing (review and editing): all authors.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-021-03483-6.

Correspondence and requests for materials should be addressed to M.R.-M.

Peer review information Nature thanks Jonas Geldmann, Marion Pfeifer, Philip Platts and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://doi.org/10.1038/s41586-021-03483-6
http://www.nature.com/reprints

60

4°

20

_oo

T T T — T T
8° 10° 12° 14° 16° 18° 20° 22° 24° 26° 28° 30¢
Extended DataFig.1|Study areaand samplingplots. Ingreen, the current (seeMethods) and non-forested areas represented in beige. The sampling grid

distribution of tropical forests following the ESA-CCllandcover product (v.1.6),  cells (n=1,57110 x10-km?grid cells) areinblack and the flooding forests, as
with adark-green-to-white gradient representing anthropogenic pressure proposed by the ESA-CCllandcover, arein blue.
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Extended DataFig.2|Taxon CAplanes1-2and1-3 withlabels for the 12
most representative taxaon each axis. a, Planes1-2. b, Planes 1-3. Colour
code correspondstothatreportedinFig. 1. The first eigenvalues arereported
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Extended DataFig. 3 |Individual predicted floristicgradientsillustrated A composite map of these three axesis giveninFig.1and the corresponding
by the threefirst axes ofthe correspondence analysis performed on taxon CAplanesare providedin Extended DataFig.2.

predicted taxon abundances.a-c, CA axis1(a), CAaxis 2 (b) and CAaxis 3 (c).
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Extended DataFig. 4 |Plans1-2,1-3and 2-3 ofthe SCGLRCCs.a, CCland CC2.b, CCland CC3.c,CC2and CC3. All climatic variables witha correlation of less
than 0.75 with the two components (dashed circle) were excluded for the sake of clarity. For abbreviations, see Extended Data Table 2.
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Extended DataFig. 6 | Projected changesunder the RCP4.5scenarioin
2085 of the climatic conditions of the 10 forest types. Areas for which
climate models predict similar climatic components (CCs) values to those
currently found within forest types (in black) areillustrated with a colour
gradientindicatingthe level of agreement amongst the 18 climate models

Future favorable - .

climatic conditions g, 90%

(asapercentage; no colour indicates that none of the original 18 climate
models predicted similar conditions). More specifically, we used 3D concave
hull (alphashape) models to assess where the combinations of current CCs
corresponding toeachforesttypeare predictedtoberepresentedin2085.
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Extended DataFig.7| The vulnerability map under two different RCP chosenbecauseitexpressesarelative vulnerability over the study areaand, if
scenarios and for two different years. a-d, Vulnerability maps under RCP 4.5 differentscenarios predict differentamplitudes of climate change, spatial
in2055 (a), RCP8.5in 2055 (b), RCP4.5in 2085 (c) and RCP 8.5in 2085 (d). As patterns of climate exposure remains similar (see Methods).

canbeseen, the predicted vulnerability s little affected by the IPCC scenario
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Extended DataFig. 8| Currentand projected anthropogenic pressure over central Africa. a, b, Current (a) and projected (b) anthropogenic pressure
predicted fromourindex of human-induced forest-disturbance intensity.
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Extended DataFig.9|Protected areanetwork and areas dedicated to
logging activitiesin central Africa. The protected areanetworkis shownin
blue; areas dedicated tologging are showninorange andred. Dataon
protected areas were obtained from the World Database on Protected Areas
(https://www.iucn.org/theme/protected-areas/our-work/world-database-
protected-areas, lastaccessed 14 August 2018), excluding marine, hunting and
game-oriented areas, except for the Democratic Republic of the Congo, for
which datafromthe World Resource Institute were used and downloaded from
ArcGIS hub (https://hub.arcgis.com/datasets/1bcd463cbb6549c9a0676edb9
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f751f9b, lastaccessed 1June 2019). Logging activity datawere provided by the
Observatoire des Foréts d’Afrique Centrale based on an unpublished work
completedinjune 2018, except for the Democratic Republic of the Congo, for
which more updated data (June 2019) were provided by the AGEDUFOR
national project. Areasinorangeillustrate forest concessions thatare known
tohave, ortobeinthe process of having, an officially validated sustainable
forest management plan. Red areasillustrate forestareas that are currently
dedicatedtologging but that either do not have an official management plan or
have anuncertain status.
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Extended Data Table 1| Characteristics of the floristic groups

Group Name Main families Representative taxa Area PA  Logging Phum CC1 CC2 CC3
1 Atlantic highland Fabaceae (19%), Anisophyllea spp., Baillonella toxisperma, 79,400 9 70 0.48 -34 34 -11
evergreen Burseraceae (17%), Aucoumea klaineana, Bobgunnia fistuloides,
Myristicaceae (13%) Testulea gabonensis
2 Atlantic coastal Fabaceae (27%), Anthostema aubryanum, Scytopetalum 17,700 54 36 035 -52 0.1 4.6
evergreen Burseraceae (17%), klaineanum, Calpocalyx spp., Coula edulis,
Myristicaceae (15%) Tetraberlinia bifoliolata
3 Atlantic inland Fabaceae (27%), Calpocalyx spp., Letestua durissima, 60,800 22 69 035 -38 -0.1 3.0
evergreen Burseraceae (15%), Eurypetalum spp., Coula edulis, Tetraberlinia
Myristicaceae (14%) bifoliolata
4 Margin Malvaceae (16%), Aubrevillea kerstingii, Holoptelea grandis, 87,600 4 20 0.42 41 24 20
semideciduous Fabaceae (13%), Mansonia altissima, Trilepisium
Cannabaceae (11%) madagascariense, Morus mesozygia
5 Evergreen- Fabaceae (15%), Manilkara spp., Oldfieldia africana, Balanites 22,200 23 80 0.27 3.2 2.0 1.0
semideciduous Sapotaceae (15%), wilsoniana, Autranella congolensis,
on sandstone Annonaceae (9%) Synsepalum spp.
6 Semideciduous Fabaceae (20%), Pericopsis elata, Fernandoa adolfi friderici, 206,400 10 34 0.26 26 -03 -0.2
Annonaceae (10%), Dasylepis seretii, Desplatsia spp.,
Malvaceae (8%) Entandrophragma cylindricum
7 Central evergreen Fabaceae (33%), Millettia spp., Brachystegia spp., Ochna spp., 265,900 23 9 0.22 06 -38 -23
Annonaceae (9%), Gilbertiodendron dewevrei, Rothmannia spp.
Olacaceae (9%)
8 Mixed evergreen Fabaceae (30%), Diogoa zenkeri, Elaeis guineensis, 158,200 10 45 040 -14 -22 -02
Olacaceae (10%), Cryptosepalum spp., Bikinia spp.,
Myristicaceae (8%) Ochthocosmus spp.
9 Degraded Fabaceae (14%), Pseudospondias spp., Musanga 40,000 10 6 0.73 1.1 2.0 1.6
semideciduous Cannabaceae (13%), cecropioides, Pterygota spp., Ricinodendron
Urticaceae (8%) heudelotii, Afzelia spp.
10 Semideciduous- Fabaceae (22%), Uapaca spp., Musanga cecropioides, 180,000 15 29 0.37 04 -03 -15
evergreen Annonaceae (10%), Annickia spp., Croton spp., Pseudospondias
transition Olacaceae (8%) spp.

For each floristic group, information is provided on the three most abundant families (Angiosperm Phylogeny Group (APG) Il classification, except for the subfamilies Caesalpiniaceae and
Mimosaceae, which were considered here independently owing to their different ecological strategies), the five most representative taxa (that is, taxa having the highest A score of the Dufréne
and Legendre index'®), the total area (km?) covered by each group, the percentage of the area covered by protected areas (PA) and dedicated to logging activities (Logging), the mean
probability of being affected by human activities (Phum, this study) and the mean value of the three climatic components (CCs) that best explain the current distribution of central African trees
(this study).



Extended Data Table 2 | Climatic predictors

CODE Description Mean (range) CCH CC2 CC3
C1 Annual Mean Temperature (°C) 24.7 (22.7 - 26.4) -0.01 -0.54 0.43
Cc2 Mean Diurnal Range (°C) 9.4 (6.2-11) 0.88 0.01 0
C3 Isothermality (C2/C7) (* 100) (unitless) 76.6 (53.1 - 89.8) -0.06 -0.67 -0.16
C4 Temperature Seasonality (Coefficient of 1.5 (0.7 - 3.6) -0.21 0.54 0.08
Variation of kelvin values) (%)
C5 Max Temperature of Warmest Month (°C) 31.1 (28.6 - 33.9) 0.38 -0.08 0.51
Ccé6 Min Temperature of Coldest Month (°C) 18.8 (16.5 - 22) -0.15 -0.76  0.06
Cc7 Temperature Annual Range (C5-C6) (°C) 12.3 (9.4 - 16) 0.53 0.32 0.1
Cc8 Mean Temperature of Wettest Quarter (°C) 24.5 (22 - 26.6) -0.21 -0.42 0.27
C9 Mean Temperature of Driest Quarter (°C) 24.2 (20.9 - 27.2) 0.3 -0.53 0.13
C10 Mean Temperature of Warmest Quarter (°C) 25.6 (23.9 - 27.3) -0.01 -0.19  0.75
C11 Mean Temperature of Coldest Quarter (°C) 23.8 (20.5 - 25.5) 0.08 -0.73 0.14
C12 Annual Precipitation (mm) 1733.5 (1219.7 - 2983) -0.26 -0.06 0.06
C13 Precipitation of Wettest Month (mm) 263.2 (195.7 - 608.7) -0.43 0.05 0.11
C14 Precipitation of Driest Month (mm) 31.9(0-112.4) 0.2 -0.4 -0.16
C15 Precipitation Seasonality (Coefficient of 52.1 (21.7 - 84.5) -0.29  0.51 0.15
Variation) (%)
C16 Precipitation of Wettest Quarter (mm) 665 (435.8 - 1273.7) -0.28  0.01 0.15
C17 Precipitation of Driest Quarter (mm) 137.7 (2 - 405.2) 0.14 -0.583 -0.13
Cc18 Precipitation of Warmest Quarter (mm) 434.3 (220.7 - 816.1) -0.9 0 0
C19 Precipitation of Coldest Quarter (mm) 302.8 (0.7 - 1332.9) 0.8 0 0.02
meanETO mean monthly evapotranspiration® (mm) 133.8 (109.9 - 146.6) 0.76 -0.1 0.02
meanCWB  mean climatic water balance® (mm) 10.6 (-19.2 - 134.3) -0.52  0.01 0.02
sumCWD total climatic water deficit® (mm) -1617.8 (-4466.3 - -55.8) -0.59 -0.29 -0.07
maxCWD maximum cumulative water deficit? (mm) -299.3 (-596 - -21.9) -0.08 -0.6 -0.21
MCWD maximum climatic water deficit® (mm) -312.3 (-596 - -37.7) -0.08 -0.62 -0.18

Correlations with the three climatic components (CCs) are given in the last three columns (see also Extended Data Fig. 4).

*meanETO was calculated using the Hargreaves formula withmeanETO =1/n(3_, ETO;), where ETO; is the evapotranspiration of month i calculated as ETO,= 0.0023 x 0.408RA, x (Tavg; + 17.8) x TD,%°,

in which RA, is the mean extrasolar radiation of month iin MJ m2d™, Tavg; is the average daily temperature of month i in °C, computed as the average of the mean maximum and minimum

temperature of month i, and TD; is the mean temperature range of month i in °C, computed as the difference between the mean maximum and minimum temperature of month i.

meanCWB =1/n(X-, P; - ETO;),where P is the precipitation of month i.
°d5umCWD = ¥, CWD; and maxCWD =max(CWD),), where CWD; = Y-, WD;, with WD, = WD,_, + P,- ETO; if (WD, + P, ETO)) < 0 or WD, = Q if (WD,_, P, - ETO,) > O. To compute CWD, the wettest
month was set as i = 1at the grid-cell level.
“MCWD =3, min(0, P;- ETO;).



nature research

Last updated by author(s): Feb 16, 2021

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
o]

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

{| A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O O X0 000

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XOO X X OK

RPN

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Raw data, as provided by forest companies, were organized and managed through the open R statistical software (version 3.6.3).
Data analysis All data analyses were performed and figures created with the open R statistical software (version 3.6.3). Codes are available at https://
github.com/MaximeRM/ScriptNature.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Taxonomy was revised and homogenized using the African Flowering Plants Database (http://www.ville-ge.ch/musinfo/bd/cjb/africa/index.php?langue=an, last
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For the human-induced forest disturbance index we used data from the “Global Rural Urban Mapping Project” (https://sedac.ciesin.columbia.edu/data/set/grump-
vl-settlement-points; last access the 01/10/2018), the Natural Earth Populated Places product (version 3.0.0; http://www.naturalearthdata.com/downloads/10m-
cultural-vectors/10m-populated-places/; last access the 07/10/2018) derived from the LandScan (https://earthworks.stanford.edu/catalog/stanford-
Vj715rc4110#iso-metadata-reference-info, ; last access the 05/10/2018) dataset, from OpenStreetMap (https://data.maptiler.com/downloads/planet/
#1.59/-17.3/19.7; last access 02/10/2018) and from the Global Roads Open Access Data Set, version 1 (https://data.maptiler.com/downloads/planet/
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#1.59/-17.3/19.7; last access the 14/09/2018).

All maps and data used for this article are accessible online in a public data repository at http://dx.doi.org/10.18167/DVN1/UCNCA7. Raw floristic data are archived
in a separate private data repository due to the highly sensitive nature of commercial inventory data. Access may be granted for research

purpose only. Researchers are thus invited to fill a data request form downloadable in the public data repository and to send it to CAFinv@cirad.fr.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[ ] Life sciences [ ] Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions | Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization | Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible,
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.
Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the

rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description In this study, we use a massive compilation of forest inventory data providing information on the abundance distribution of 193
dominant tree taxa in 185,665 plots (6 million trees). We jointly model their spatial distribution and provide the first transnational
benchmark maps of the floristic and functional composition of central African forests. Based on these predictions and on global
change scenarios, we then predicted the expected vulnerability of central African forests to global change by 2085.

Research sample We studied tropical trees with a diameter at breast height (DBH) >= 30 cm. The sample choice was based on the availability of
commercial inventories and the data is meant to represent tree communities in central Africa.
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Sampling strategy The sampling strategy consisted of continuous and parallel transects 20 m or 25 m wide, often 2-3 km apart, and subdivided into
rectangular 0.4 or 0.5-ha plots. The total number of plots was of 18,665 are hence considered to represent most central African
forests

Data collection Data were collected by forest companies in 105 logging concessions in order to build management plans. Most forest companies

were assisted and trained by European consultant firms for these inventories (e.g. CIRAD or Foret Resource and Management).

Timing and spatial scale  Data were collected over an area of ca. 160,000 square km from 1996 to 2014.

Data exclusions We discarded i) species and genera deemed to be not reliably identified over the whole study area; ii) taxa occurring in less than 5%
of the grid cells because they cannot be studied at the regional scale; iii) grid cells having a field plot sampling area < to 10 ha and
where the selected taxa represented less than 75% of the total number of individuals originally inventoried to ensure
that our dataset was representative of the within-grid cell tree community composition.

All this selection procedure (detailed in the methods) was done independently and before the statistical analyses in order to perform
analyses on a high-quality dataset.

Reproducibility Data are available at http://dx.doi.org/10.18167/DVN1/UCNCA7 and codes are available at https://github.com/MaximeRM/
ScriptNature. Analyses are thus fully reproducible. Due to its huge size, the raw dataset is, however, hardly reproducible at short
term.

Randomization Data were acquired through systematic inventories designed to best represent the different forest types within the forest
concession.

Blinding Because data were acquired through a systematic design without any prior stratification or information, data acquisition can be

considered here as a blinding process.

Did the study involve field work? |:| Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies g |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern

XX NXNXNXNXX s
OoooooQ

Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.
Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  ygme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
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Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] public health

[ ] National security

|:| Crops and/or livestock
|:| Ecosystems

Oooogds

|:| Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

OO0oodoods
Ooodoogno

Any other potentially harmful combination of experiments and agents
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ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.




Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data. S
g

Files in database submission Provide a list of all files available in the database submission. P~
) )

Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to I
(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents. %
>

Methodology -
D

Replicates Describe the experimental replicates, specifying number, type and replicate agreement. o
=

=

>

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and (o)
whether they were paired- or single-end. Lé’

3

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 3
number. )

Y

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).




Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,

slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.qg.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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